7th Annual SKBI Conference

E-Commerce Models and Causality: Novel Perspectives on Uplift Modeling

Stefan Lessmann
HU Berlin

Advances in Data Science and Implications for Business

Agenda

E-Commerce Models and Causality: Novel Perspectives on Uplift Modelling

- **Uplift Modeling Fundamentals**
 - □ An informal and semi-formal introduction
 - ☐ Application context and prior work
- Uplift Transformation
 - □ Conversion modeling
 - □ Revenue uplift
- **E-Commerce Case Study**
 - □ Data and experiment design
 - □ Empirical results
- **■** Conclusions

Uplift Modeling = Stats + ML + App Context

Application Context: E-Couponing

■ E-Shop Scenario

- ☐ Surfer visits shops
- □ Clickstream data
 - Page visited
 - Time on page
 - Device
- Decision(s)
 - **□** Show incentive?
 - □ Which incentive?
 - Percent or absolute discount
 - Discount size
 - Constraints

Aid decisions using via predictive model

Semi-Formal Introduction to Uplift Modeling

Two-Model Approach

- M1 estimates response in treatment group
- M2 estimates response in control group
- Uplift score:

$$s(X) = P(\text{act}|X,T) - P(\text{act}|X,C)$$

Many disadvantages

Many disadvantages

Observable outcome (e.g. from experiment)

Responded

Desired info: who responds

because of treatment

Prior Work on Uplift Modeling

- Total of 37 studies
- About 65% published in 2012 or later
- Majority of studies develop novel algorithms

Uplift Transformation

Uplift Transformation

Class Variable Transformation (cont.)

	Responded									
		Yes	No							
Tre	(C)	Treated Responders	Treated non- Responders							
ated No		Control Responders	Control non- Responders							

$s(X_i) =$
$P(Y_i = 1 X, T)$
$-P(Y_i=1 \boldsymbol{X},C)$

	Act If NOT targeted										
		Yes	No								
Act if targeted	sək	Sure Things	Ideal targets: Persuadables								
	oN	Do-Not- Disturbs	Lost Causes								

$$D = \{Y_i, X_i, T_i\}_{i=1}^n$$

$$z_{i} = \begin{cases} 1 & if \ T_{i} = 1 \ \cap Y_{i}^{c} = 1 \\ 1 & if \ T_{i} = 0 \ \cap Y_{i}^{c} = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$s(\boldsymbol{X}_i) = P(z_i|\boldsymbol{X}_i)$$

Framework to model uplift using

supervised classification.

[Jaskowski/Jaroszewicz, 2012; Lai, 2006]

Notation

- Customer index
- Group membership $T_i \in \{0,1\}$
- Spending

■ Conversion

 $Y_i^c \in \{0,1\}$

Observations

Uplift Transformation

Revenue Transformation (cont.)

Not all customers spend the same.

$$s^r(\boldsymbol{X}_i) = P(z_i^r | \boldsymbol{X}_i)$$

$$s^b(\boldsymbol{X}_i) = P(z_i^r | \boldsymbol{X}_i)$$

Framework to model revenue uplift using supervised regression or classification.

[Bodapati/Gupta, 2004; Jaroszewicz, 2016]

$$D = \{Y_i, X_i, T_i\}_{i=1}^n$$

$$z_i^r = \begin{cases} +Y_i & \text{if } T_i = 1 \ \cap Y_i > 0 \\ -Y_i & \text{if } T_i = 0 \ \cap Y_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$z_i^b = \begin{cases} 0 & \text{if } z_i^r \in (-\infty, 0) \\ 1 & \text{if } z_i^r \in [0, +\infty) \end{cases}$$
$$z_i^b \in \{0, 1\}$$

Notation

- Customer index
- **■** Group membership
- Spending
- Spending
- Conversion
- Observations
- $T_i \in \{0,1\}$ $Y_i \in \mathbb{R}$ $Y_i \in \mathbb{R}$ $Y_i^c \in \{0,1\}$

E-Commerce Case Study

GROUP	OBSERVAT	IONS	CONVERS	UPLIFT	
Treatment	2,285,835	75 %	,		/ /
Control	766,155	25 %	57,285	7.5 %	0.2 %
	3,051,990		233,076		

■ Data partitioning

- □ Training (40%)
- □ Parameter tuning (30%)
- □ Model comparison (30%)

■ Base learners

- ☐ Supervised classification & regression
- □ Several meta-parameter settings
- ☐ Logit, Lasso, SVM, kNN, RandomForest, GBM, Extremely Randomized Trees, ...

	VARIABLE	PAGE-TYPE						
	TimeToFirst							
; T	imeSinceFirst	Cart						
	TimeSinceOn							
		Sale						
		Search						
		Product						
		Overview						
	ClicksPer	Product						
S	crollHeightPer	Overview						
Tin	neToBasketAdd							
TimeSi	inceLastConversion							
Tim	eSinceTabSwitch							
Vie	ewCoutLastVisit							
Tim	neSinceLastVisit							
Tim	neSinceFirstVisit							
Dι	ırationLastVisit							
62 Variables in total								

E-Commerce Case Study

Empirical Results

■ Qini plot

- ☐ Target customers by uplift score
- □ Incremental revenue per decile

CRVT

- \square Model z_i^r
- □ Regression

■ RDT

- \square Model z_i^b
- □ Classification
- Selection of best base learners

E-Commerce Case Study

Empirical Results (cont.)

			DECILE (WEIGHT)										
UPLIFT MODEL	GOAL	LEARNER	1	2	3	4	5	6	7	8	9	WAVG	RANK
			0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1		
Response	Revenue	Ridge	1191	1205	1191	1141	1153	1213	1483	1683	1647	1236	4
	Conver- sion	ERT	881	1034	1231	1261	1384	1656	1708	1673	1579	1244	3
Lai (2006)	Conver- sion	RFC	893	1034	1140	1258	1311	1439	1508	1639	1701	1192	5
CRVT	Revenue	LinR	1208	1154	1124	1112	1354	1331	1488	1596	1655	1246	2
RDT	Revenue	ERT	1470	1199	1505	1638	1396	1668	1907	1892	1717	1512	1
Tian et al. (2014)	Revenue	RFR	422	570	749	864	448	521	535	626	895	597	7
	Conver- sion	GBC	775	843	905	1031	1281	1399	1438	1427	1579	1044	6

Conclusions

Summary

- □ Uplift modeling and uplift transformation
- □ Conversion versus revenue uplift
- □ Response variable transformations for revenue
- □ Promising results in e-marketing case study

■ Closing thoughts

- □ Smart decisions require the right model
- ☐ The right model is not necessarily complex
- □ Smart decisions require the right objective
- □ Decision maker model mismatch

Comments, Questions, Critic

Stefan Lessmann

School of Business and Economics Humboldt-University of Berlin Unter den Linden 6, D-10099 Berlin, Germany

Tel. +49.30.2093.5742 Fax. +49.30.2093.5741

stefan.lessmann@hu-berlin.de
http://bit.ly/hu-wi

Appendix

References

- Bodapati, A., & Gupta, S. (2004). A direct approach to predicting discretized response in target marketing. *Journal of Marketing Research*, 41, 73-85.
- Jaskowski, M., & Jaroszewicz, S. (2012). Uplift Modeling for Clinical Trial Data. In N. Elhadad & M. Hauskrecht (Eds.), *ICML 2012 Workshop on Clinical Data Analysis*. Edinburgh, Scotland.
- Jaroszewicz, S. (2016). First ideas on revenue uplift modeling. Personal Communication. October 15, 2016.
- Lai, Y.-T., Wang, K., Ling, D., Shi, H., & Zhang, J. (2006). Direct Marketing When There Are Voluntary Buyers. In *Proceedings of the 6th International Conference on Data Mining (ICDM)* (pp. 922-927). Hong Kong, China: IEEE Computer Society.
- Lo, V. S. Y. (2002). The true lift model: A novel data mining approach to response modeling in database marketing. *ACM SIGKDD Explorations Newsletter*, *4*, 78-86.
- Radcliffe, N. J. (2007). Generating Incremental Sales: Maximizing the Incremental Impact of Cross-Selling, Up-selling and Deep-Selling Through Uplift Modelling. In. Edinburgh: Stochastic Solutions Ltd.
- Rzepakowski, P., & Jaroszewicz, S. (2012). Uplift modeling in direct marketing. *Journal of Telecommunications and Information Technology*, 2, 43-50.
- Siegel, E. (2011). Uplift Modeling: Predictive Analytics Can't Optimize Marketing Decisions Without It. In: Prediction Impact white paper sponsored by Pitney Bowes software.
- Tian, L., Alizadeh, A. A., Gentles, A. J., & Tibshirani, R. (2014). A simple method for estimating interactions between a treatment and a large number of covariates. *Journal of the American Statistical Association*, 109, 1517-1532.