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Uplift Modeling Fundamentals

I Uplift Modeling = Stats + ML + App Context
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Uplift Modeling Fundamentals

= Application Context: E-Couponing

m E-Shop Scenario
O Surfer visits shops
O Clickstream data
— Page visited
—Time on page
—Device
m Decision(s)
O Show incentive?

O Which incentive?

—Percent or
absolute discount

— Discount size
— Constraints
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Uplift Modeling Fundamentals

= Semi-Formal Introduction to Uplift Modeling

Observable outcome
(e.g. from experiment)
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Two-Model Approach

Desired info: who responds

m M1 estimates response in treatment group because of treatment
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Uplift Modeling Fundamentals

I Prior Work on Uplift Modeling

KDD Process (Fayyad et al., 1996)
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B Total of 37 studies
B About 65% published in 2012 or later
B Majority of studies develop novel algorithms
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I Uplift Transformation

S = J—
O bJ ect Ive l-—J{m ::“I:..‘;:' @ fﬂl'lr'l'.;;'l % Ul Bl e Iml-:lm
"f‘ - = - —_— — r//;ég’; —
P v’
m Benefits of Two-Model approach.-—"=, [ g 3...'} et | rotne l oot
m Without its flaws Upiie
Transformation el
™~
Object of
Transtormation Output Space Input Space
‘\\
Response q Covarlate
Transformation Transformation
Modelin IncreasaCenvarslon
Ohjecthf: Ukalhood Increase Basket
| Corversion Modnllnu | Revenue Mocleling |
Transformation | cjags variable Transfor- Covtinuous Response Treazment-Covarlates
Approach matlon {Jas<owskl & ¥arlable Transformation Inzeractions Asproaca
laroszewlcz, 2012} {laroszewlcz, 2016} {Tian at al,, 2014}

Lal'aWelghtad Uplift
Mathod {Lal, 2006)

Revanus Discretization
ransformation (zhis work)

Inzsracticn Tarm Mathed
{Lo, 2002}




Uplift Transformation

Class Variable Transformation (cont.)

o!| Control |Control non- o| Do-Not- Lost Caf.l,s:a’s
E = Responders | Responders S(Xi) — E < | Disturbs >
g —
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( l) ( ll l ) m Customer index [
. . ® Group membership T; € {0,1
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[Jaskowski/Jaroszewicz, 2012; Lai, 2006)] superVIsed classification. ®m Observations X; ERP
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Uplift Transformation 5 -

! Revenue Transformation (cont.)

D = {Yu Xi' Ti}?zl

(+Y, ifT,=1NnY;>0
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m Observations X; ERP
[Bodapati/Gupta, 2004; Jaroszewicz, 2016]
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E-Commerce Case Study

I Experimental Design

Treatment | 2,285,835 |75 %| 175,791 |7.7 % 0.2 % ~ TimeToFirst
Control 766,155 [25%| 57,285 |7.5%| = ||z TimeSincefirst Cart
3,051,990 233,076 : L TimeSinceOn
— > Salo
u Data partitioning .................... > Search
e . Product
O Training (40%) S > Overview
O Parameter tuning (30%) ClicksPer Product
. ScrollHeightPer Overview
O Model comparison (30%) TimeToBasketAdd
u Base Iearners TimeSincelLastConversion
TimeSinceTabSwitch
O Supervised classification & regression ViewCoutLastVisit
O Several meta-parameter settings TimesincelastVisit
TimeSinceFirstVisit
O Logit, Lasso, SVM, kNN, RandomForest, DurationLastVisit
GBM, Extremely Randomized Trees, ...
62 Variables in total
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E-Commerce Case Study

= Empirical Results

2000

® Qini plot

O Target customers
by uplift score

O Incremental
revenue per decile

m CRVT
O Model z;
O Regression
m RDT
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b — 6.8e+04 RDT (ERT) 1.4e+04 CRVT (LinR) |
0 Model Zj 5.3e+04 RDT (RFC-C) ~ — 4.2e+04 RDT (LogR)
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O Classification 4.8¢+04 CRVT (Ridge) ~ — 6.7e+03 RDT (SGDC)
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base learners CRVT: Class response variable transformation (z])

RDT: Response discretization transformation (zib)
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E-Commerce Case Study

I Empirical Results (cont.)

DECILE (WEIGHT)

UPLIFT 1 2 3 4 5 6 7 8 9

GOAL LEARNER WAVG RANK
MODEL 09 08 07 06 05 04 03 02 01

Revenue| Ridge |1191|1205 (1191|1141 (1153|1213 (1483|1683 |1647|1236
Response

Conver-

sion ERT 881 1034 | 1231|1261 |1384 1656|1708 1673|1579 | 1244
) Conver-

Lai (2006) sion RFC 893 11034 |1140| 1258|1311 (1439|1508 (1639|1701 |1192
CRVT [Revenue| LinR 1208 | 1154 | 1124 | 1112 | 1354 | 1331 | 1488 | 1596 | 1655 | 1246
RDT Revenue ERT 1470 | 1199|1505 | 1638 | 1396 | 1668 | 1907 | 1892 | 1717 | 1512
) Revenue RFR 422 | 570 | 749 | 864 | 448 | 521 | 535 | 626 | 895 | 597

Tian et al.

(2014) C‘:‘g’sr GBC | 775 | 843 | 905 | 1031 | 1281 | 1399 | 1438 | 1427 | 1579 | 1044
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= Conclusions

B Summary
O Uplift modeling and uplift transformation

O Conversion versus revenue uplift

0O Response variable transformations for revenue

O Promising results in e-marketing case study

m Closing thoughts
O Smart decisions require the right model (7 /. . e
O The right model is not necessarily complex \\-" /" \3 f\

O Smart decisions require the right objective inaypg V";

\ ¥

O Decision maker model mismatch
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