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Abstract 

This paper analyzes the technical and practical issues involved in the use of data at mixed 

frequencies (quarterly and monthly and, possibly, weekly and daily) to forecast monthly and 

quarterly economic activity in a country.  In particular, it considers alternative high-frequency 

forecasting models for GDP growth and inflation in the Philippines s, utilizing indicators that are 

observable at different frequencies and with particular focus on dynamic time-series models that 

involve latent factors. The study compares the forecasting performance of this approach with  

more commonly used data-intensive methods that have been developed in applications in the U.S. 

and Europe.  These alternative approaches include Mixed Data Sampling (MIDAS) Regression 

and Current Quarter Modeling (CQM) with Bridge Equations.  While these alternatives are 

mostly data-intensive, the dynamic latent factor modeling with mixed frequencies presents a 

parsimonious approach which depends on a much smaller data set that needs to be updated 

regularly.  But it also faces additional complications in methodology and calculations as mixed-

frequency data are included in the analysis. 

 
Regarding high-frequency forecasting of GDP growth and inflation in the Philippines, our 

preliminary results based on static simulations and turning point analysis indicate that the mixed 

dynamic latent factor model (MDLFM) performs better than MIDAS regression, bridge equations 

with and without principal components, and the benchmark autoregressive models.  Further 

comparison analysis and empirical applications are needed to settle this issue more definitively – 

especially in the direction of introducing more elaborate error structures, multiple latent common 

factors, and other exogenous indicators in the high-frequency models for Philippine GDP growth.  

Future work also will cover dynamic multi-period simulations of the estimated models as well as 

extensions to other selected countries in Southeast Asia. 
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1. Introduction  

Building on earlier results reported in Mariano and Ozmucur (2015a, 2015b), this paper 

analyzes the technical and practical issues involved in the use of data at mixed and high 

frequencies to forecast monthly economic activity in the Philippines.  In particular, it 

considers constructing high-frequency forecasting models for GDP growth in the 

Philippines, in the form of dynamic time-series models that combine latent factors with a 

parsimonious set of indicators that are observable at different frequencies.  

The econometric issue of combining mixed high-frequency data for short-term 

forecasting was a research area of extreme interest to Lawrence Klein.  In the context of 

macroeconometric models, his works on this topic started over twenty five years ago – 

e.g., as reported in his presentations in international meetings in the 1980s, Klein and 

Sojo (1987, 1989), Klein and Park (1993, 1995), Klein and Ozmucur (2002, 2004, 2008), 

and Mariano and Tse (2008) - and continued to his dying days – through his weekly 

reports on updated forecasts from his Current Quarter Model (CQM) of the U.S. 

economy.  To quote from Klein and Ozmucur (2008), 

 

“Our long-standing conviction stands intact that detailed structural model 

building is the best kind of system for understanding the macroeconomy through 

its causal dynamic relationships, specified by received economic analysis.  There 

are, however some related approaches, based on indicator analysis that are 

complementary for use in high frequency analysis.  For most economies, the 

necessary data base for structural model building, guided by consistent social 

accounting systems (national income and product accounts, input-output 

accounts, national balance sheets) are, at best, available only at annual 

frequencies.  Many advanced industrial countries can provide the accounts at 

quarterly frequencies, but few, if any, can provide them at monthly frequencies. 

  

“A more complete understanding of cyclical and other turbulent dynamic 

movements might need even higher frequency observation, i.e. weekly, daily, or 

real time.  It would not be impossible to construct a structural model from 

monthly data, but a great deal of interpolation and use of short cut procedures 

would have to be used; so we have turned to a specific kind of indicator method to 

construct econometric models at this high frequency.   … 

  

“In step with new technological developments in the information sector of modern 

economies, attention has been paid to the use of newly available computer power, 

data resources, telecommunication facilities and other technical changes that 

made higher frequency analysis of economic statistics available.” 
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This topic also has generated considerable interest currently, especially in financial 

econometrics, as more observable data have become available at different and higher 

frequencies.  This is especially so for government policy planners as well as monitors of 

financial market developments, who would be interested in timely utilization of high-

frequency indicators to update their market assessments and forecasts. 

The mixed-frequency models of the type we consider for forecasting purposes in this 

paper have been used in the construction of business condition indices in the 

econometrics literature.   From a methodological perspective, the combination of mixed-

frequency data and latent factors in the dynamic model introduces complexities in the 

estimation of the model.  Algorithms have been developed to address these complexities 

and applied in BCI construction for the U.S. and Europe. 

This paper investigates the potential gains in applying this approach to high-frequency 

forecasting of GDP growth in the Philippines.  Extensions of the approach, introducing 

richer error structures in the model and use of multiple factors, are also investigated.  For 

purposes of application to the Philippines, we take “high-frequency” forecasting to refer 

to either month or quarter, with updates on the forecast as information becomes available 

within the forecasting period. 

Compared to other forecasting approaches that have been applied in the literature, which 

are mostly data-intensive, the dynamic factor modeling procedure in BCI construction 

presents an interesting and parsimonious approach which depends on a much smaller data 

set that needs to be updated regularly.  But it also faces additional complications in 

methodology and calculations as mixed-frequency data are included in the analysis. 

The forecast performance of the estimated models are also compared with other 

alternative current modeling approaches – e.g., Mixed Data Sampling Regression or 

MIDAS (Ghysels et al 2004; Ghysels et al, 2007; and Ghysels, 2013), Factor Analytic 

Models  (Chow and Choy, 2009), and Current Quarterly Modelling (CQM) with Bridge 

Equations (Klein and Sojo, 1989; Klein and Ozmucur, 2004 and 2008; and Baffigi,  

Golinelli and Parigi, 2004). 
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Earlier published references dealing with dynamic factor modeling for construction of 

business conditions indices (BCI) in the U.S. and Europe provide the starting point for 

the application to the Philippines that is presented in the paper.  The current efforts 

towards constructing and maintaining economic index indicators in the Philippines are 

tapped to jump-start the specifications for the empirical component of the project.  

Estimation and validation of the empirical models presented in the paper rely on filtering 

algorithms that can be set up within software packages that are commercially available, 

such as EVIEWS, MATLAB, or OX.  

 

Regarding high-frequency forecasting of GDP growth in the Philippines, the preliminary 

results reported in the paper, which are based on static simulations of the estimated 

models, indicate that the dynamic latent factor model performs better than the 

unrestricted MIDAS regression, the bridge equations with and without principal 

components, and the benchmark autoregressive models. Further analysis and empirical 

applications are needed to settle this issue more definitively – especially in the direction 

of introducing more elaborate error structures, multiple latent common factors, and other 

exogenous indicators in the high-frequency models for Philippine GDP growth.  Future 

work also will cover out-of-sample and dynamic simulations and turning point analysis of 

the estimated models as well as extensions to other selected countries in Southeast Asia. 

 

 

2.  METHODOLOGY FOR DYNAMIC LATENT FACTOR MODELS WITH  

     MIXED FREQUENCIES (MDLFM) 

 

The approach is intertwined with analyzing the business cycles in an economy.  The basic 

philosophy that drives the approach is that macroeconomic fluctuations are driven by a 

small number of common shocks or factors and an idiosyncratic component peculiar to 

each economic time series.  The seminal papers on this are Sargent and Sims (1977) and 

Stock and Watson(1989).  We also introduce another feature - use of mixed-frequency 

data.  This further complicates the analysis, but also enhances the potential for further 

gains in forecast performance. More recently the approach has received renewed interest 

for forecasting purposes in the U.S. and larger European countries (e.g., see Foroni & 

Marcellino, 2012 and 2013).  The earlier works (e.g., Stock and Watson, 1989) develop 
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single factor models to construct composite indices of economic activity based on a 

handful of coincident indicators.  A related approach (e.g., Chow & Choy, 2009) uses the 

model to extract unobserved common factors from a large collection of observable 

indicator variables.  Furthermore, the estimated factor model, properly validated, also 

may be used to forecast macroeconomic variables of interest.   

 

The common factors are latent, explained by their joint dynamics and, possibly, 

interactions with   observable indicators.  The dynamics of the target variable output 

depends on own lags, the unobservable common factors, and, possibly, exogenous factors.  

The system may also have other observable variables that serve as indicators for the latent 

common factors.  

  

 A similar modeling approach is used in  

 Mariano and Murasawa (2003, 2010) in constructing an improved coincident 

economic index indicator for the U.S. using mixed frequencies.  Here, quarterly 

GDP is included in the standard list of monthly coincident indicators, namely  

o Employees on non-agricultural payrolls 

o Personal income less transfer payments 

o Index of industrial production 

o Manufacturing and trade sales   

 

 Aruoba, Diebold & Scotti (2009), ADS for short,  in constructing a “real-time” 

(daily) BCI for the US, using four indicators 

o GDP – Quarterly 

o Employment – Monthly 

o Initial jobless claims – Weekly 

o Yield curve premium rate - Daily 

 

Here the business economic condition of a country is treated as a latent (unobservable) 

entity for which there are observable variables or indicators. As ADS remarked, “Latency 

of business conditions is consistent with economic theory, … which emphasizes that the 

business cycle is not about any single variable, whether GDP, industrial production, sales, 
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employment, or anything else.  Rather, the business cycle is about the dynamics and 

interactions (“co-movements”) of many variables.” 

 

From this perspective, it becomes natural to use a state-space formulation for the latent 

factor model.  Kalman filtering procedures (linear and nonlinear – e.g., see Kalman, 

1960; Kalman & Busy, 1961; Cuthbertson, Hall, and Taylor, 1992; Durbin & Koopman, 

2012; Hamilton, 1994; Harvey, 1989; Kim & Nelson, 1999; Tanizaki, 1996) are then 

applied to estimate unknown model parameters and perform signal extraction for the 

calculation of the latent factors.   

 

The Kalman filtering approach needs to be adapted to special complicating features of the 

problem.  In particular, using mixed frequency data for the indicators introduces inherent 

nonlinearities and missing data in the “measured” variables.  Also, additional attention is 

needed and further complications in calculations arise when dealing with indicators that 

are flow variables.  All these are accounted for in the specific way in which the state-

space representation is set up for the analysis. 

 

In terms of dynamic factor modeling with mixed frequencies for BCI construction, there 

are earlier published references dealing with the topic and related issues as applied to the 

U.S. and to Europe (e.g., Stock and Watson,1989: Liu and Hall, 2001;  Mariano and 

Murasawa, 2003 and 2010;  ADS, 2009; and Foroni and Marcellino, 2012 and 2013). 

These provide the starting point for the analysis of the methodology in the paper and its 

application in this paper to the Philippines and other selected Southeast Asian countries.   

 

The model structure for the analysis is as follows.  Let 

 xt = latent business condition at time t 

 yt
i = ith business / economic indicator at time t 

 wt
k = kth exogenous variable at time t 

 y~
t
i = ith observable business / economic indicator at time t 

 

Note that yt
i  may not be observable at all values of t when observations are available at 

lower frequency (e.g., quarterly or semester or annual, instead of monthly).  In this case, 
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there would be missing data for y ~
t
i .  When available, y ~ it would equal yt

i if it is a stock 

variable, but would equal the intra-period sum of corresponding monthly values if it is a 

flow variable. 

 

For the dynamic latent factor model for xt and its interaction with yt
i , we assume that xt 

follows an autoregressive process of order p, AR(p): 

  (L) xt = t,  t ~ iid N(O,1) ,  (L) = 1 +   L + 2L2 + … + p Lp 

In turn, the indicators yt
i are linearly related to their own lags (internal dynamics), to xt, 

as well as to some exogenous variables wt
k : 

 yt
i = i + i xt +   (ik wt

k  + (L) yt
i + ut

i 

where, ut
i are contemporaneously uncorrelated (for different i) and iid N(0,1) and 

uncorrelated with t.   (L) is a polynomial lag operator of some finite degree, with an 

additional idiosyncratic structure due to the time-spacing of available observable 

indicators (see ADS, p. 418). 

 

This model can be recast in the standard state-space form (e.g., see ADS (2009), p. 419 or 

Mariano and Murasawa (2003, 2010)): 

 yt = Z t t+  w t + t 

 t+1 = T t + R t  

 t ~ (0, Ht) 

 t ~ (0, Q) 

 where 

 yt = vector of observed variables 

 t = vector of state variables 

t = matrix of parameters for state variables 

wt = vector of predetermined variables such as constant term, trends, and lagged   

        dependent variables 

 = matrix of parameters for predetermined variables 

t = measurement shocks 

t = transition shocks 
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Kalman filtering procedures can then be applied to estimate unknown parameters in this 

state-space formulation and perform signal extraction to calculate estimates of the latent 

factor. This Kalman filtering approach needs to be adapted to special complicating 

features of the problem.  In particular, using mixed frequency data for the indicators 

introduces missing data in the “measured” variables yt.  Details for formulating the state 

space model to accommodate this are in Mariano and Murasawa (2003, 2010). Also, 

additional attention is needed and further complications in calculations arise when 

dealing with indicators that are flow variables (see Harvey, 1989, and ADS, 2009).  All 

these are accounted for in the specific way in which the state-space representation is set 

up for the analysis.  It should be pointed out that specific expressions for the variables 

and parameters in the measurement and state equations depend on the mixed frequencies 

appearing in the model.  The formulas get more complex and numerical treatment of the 

model gets more computer intensive as higher and higher frequencies are introduced into 

the model. 

 

3.  ALTERNATIVE MODELING APPROACHES 

 

3.1. BENCHMARK – AR (p) and VAR (p) 

 

For this paper, we use univariate and vector autoregressive processes as benchmark 

models for the target variables under discussion.  For quarterly observable target 

variables, alternative models could be used:  unrestricted quarterly AR(p) or VAR(p) or 

multi-frequency monthly AR(p) or monthly VAR(p) with missing observations – see 

Zadrozny (1988), Abeysinghe (1998, 1999), and Mariano and Murasawa (2010).  In the 

monthly models with missing observations, the model can be re-cast with a state-space 

representation and Kalman filtering technology can then be applied to the state-space 

formulation to estimate the model.  

 

3.2. Current Quarter Model (CQM): Bridge Equations and Principal Components 

 

In an effort to develop an alternative full-blown structural modeling of the economy 

which at the same time harnesses key information available at different frequencies, 

Klein and Sojo (1989) proposed a high-frequency macro-econometric or current quarter 

model (CQM) for the U.S.  This concept and modeling approach has been applied to 
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other countries and studied in various subsequent publications – e.g., Klein and Park 

(1993, 1995), Klein and Ozmucur (2004, 2008), Baffigi, Golinelli and Parigi (2004), and 

Ozmucur (2009).  Now, CQM models have been developed for updating quarterly 

forecasts in China, Hong Kong, Japan, Mexico, Russia and Turkey.  CQMs are now 

under construction for Malaysia, the Philippines, and Thailand. 

 

The main objective is to forecast in a timely fashion the national income components – 

typically available quarterly – utilizing quarterly and higher-frequency data as they 

become available.  For the U.S., real GDP components are considered from the 

production, expenditure and income sides.  

 

To establish statistical relationships, CQM uses “bridge equations” relating GDP 

components to quarterly and monthly “indicator” variables.  Indicator variables are 

observable, with sufficient correlation to the GDP component; and with enough lead time 

relative to the GDP components.  For monthly indicators, averages are used over the 

quarter – averages (or estimates of them) are updated as more monthly observations 

become available.  For purposes of forecasting the monthly and quarterly indicators, 

ARIMA models are used as well.  If no indicators are available, an ARIMA model would 

be estimated for the GDP component itself. 

 

Since data for the production side are released with a longer lag in the United States 

(about 3 months), the method of principal components is used as the third way of 

estimating GDP.  Monthly indicators are used to extract principal components. Quarterly 

average of the first principal component is used as the first determinant of real GDP, and 

GDP deflator. The remaining principal components (quarterly averages since they are 

available monthly) enter the equation in a stepwise fashion provided they are significant 

at the five percent level. 
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More details for the U.S. CQM are provided in Klein and Park (1993, 1995) and Klein 

and Ozmucur (2004, 2008). 

 

 

3.3. MIDAS (Mixed Data Sampling) Regressions 

A typical bridge equation relates a quarterly variable to three month averages of  monthly 

variables. This implicitly imposes a restriction on parameters for the months of the 

quarter, which introduces asymptotic biases and inefficiencies (Ghysels, 2013). In 

contrast, MIDAS estimates a monthly regression of GDP on monthly (and possibly 

quarterly) indicators using parsimonious distributed lags to represent missing 

observations.  The initial reference is Ghysels, Santa-Clara, and Valkanov (2004).  One 

typical lag structure that is used is the exponential Almon lag structure.  Alternative lag 

structures that have been used in empirical work include Beta, Linear, Hyperbolic, and 

Geometric lag coefficients.  The model is estimated by nonlinear least squares using 

actual observed data at mixed frequencies.  

 

The approach also has been extended to Unrestricted (Truncated) MIDAS; 

Autoregressive MIDAS, which adds a lagged y to the regressors; Factor-MIDAS – which 

includes latent factors, thus combining MIDAS with MF-DLFM; and Markov-Switching 

MIDAS.   

4. EMPIRICAL RESULTS FOR THE PHILIPPINES 

The current efforts towards constructing and maintaining economic index indicators in 

the Philippines (e.g., Bersales et al, 2004; Virola and Polistico, 2010; Zhang and Zhuang, 

2002; and OECD, 2011) are tapped to jump-start the empirical component of the paper.   

 

The Leading Economic Indicator Index (Philippine Statistics Authority National 

Statistical Coordination Board, 2014), which is quarterly, was developed jointly by the 

Philippine Statistics Authority National Statistical Coordination Board and the National 

Economic and Development Authority (NEDA).   The computation of the composite 

leading economic indicator involves the use of a reference series (the non-agriculture 

component of GDP) and eleven leading economic indicators, which reflect the 

importance of the openness and emerging nature of the economy.  These indicators are: 

consumer price index, electric energy consumption, exchange rate, hotel occupancy rate, 
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money supply, number of new business incorporations, stock price index, terms of trade 

index, total merchandise imports, visitor arrivals, and wholesale price index. We 

excluded some variables from the list because of data limitations and included some other 

variables which proved to be useful in other studies.   

Initially, sixteen monthly indicators are considered in our analysis. As in Klein & Sojo 

(1989), these indicators are grouped into two. There are ten indicators used in the 

prediction of real GDP and eight indicators are used in the prediction of GDP deflator.  

All variables, including quarterly GDP, were tested for unit roots. All variables were 

transformed to obtain year-on-year growth rates or year-on-year differences. 

Furthermore, before estimating equations, these variables were standardized to have zero 

means and unit variances. These variables are listed below:      

 

Monthly indicators for real GDP (Figure 1) 

 

  Y01 ---  Industrial production index growth rate (year-on-year) 

  Y02 ---  Merchandise Imports growth rate (year-on-year) 

  Y03 ---  Merchandise Exports growth rate (year-on-year) 

Y04 ---  Real government expenditure growth rate (year-on-year) 

Y05 ---  Real Money supply (M1) growth rate (year-on-year) 

Y06---     World trade volume growth rate (year-on-year) 

Y07 ---  Real Stock Price Index growth rate (year-on-year) 

Y08 ---  Real exchange rate, growth rate (year-on-year) 

Y09 ---     Time deposit rate-savings deposit rate, year-on-year difference 

  Y10 ---     Treasury Bills rate (91 Day) - US treasury 3-month bill rate, year-on-year 

difference   

 

Monthly indicators for GDP Deflator  (Figure 2) 

 

Y21 ---  Consumer Price Index growth rate (year-on-year) 

Y22 ---  Producer Price Index, growth rate (year-on-year) 

Y23 ---  Wholesale Price Index (Metro Manila) growth rate (year-on-year) 

Y24 ---  Retail Price Index growth rate (year-on-year) 

Y25 ---  Exchange rate, growth rate (year-on-year) 

Y26 ---  Money supply (M1) growth rate (year-on-year) 

Y29 ---  Time deposit rate-savings deposit rate, year-on-year difference (same as 

Y09) 

Y30 ---  Treasury Bills rate (91 Day) - US treasury 3-month bill rate, year-on-year 

difference (same as Y10) 

There are three quarterly target variables (Figure 3) 

  Y51 --- Gross Domestic Product growth rate (year-on-year) 

  Y52 ---  Real Gross Domestic Product growth rate (year-on-year) 
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  Y53 ---    GDP Deflator growth rate (year-on-year) 

 

Figure1. Standardized Monthly Indicators for Real GDP Growth (2000M01-2015M12) 
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Figure 2. Standardized Monthly Indicators for GDP Deflator (2000M01-2015M12) 
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Figure 3. Real GDP Growth and GDP Deflator Growth (2000Q1-2015Q4) 
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Data for the 2000 to 2015 period are used in all estimations.  In addition to the mixed-

frequency dynamic latent factor model, four other modeling approaches are included – 

the benchmark Autoregressive Process, Bridge Equations, Principal Components, and 

MIDAS.   

 

Specifically, the following nine models are estimated in this empirical exercise (listed in 

Table 1 below). The model variations in the categories of benchmark autoregressive 

process, bridge equations, and principal components – models 1 – 6 in the list below - are 

based on quarterly observations (actual or aggregated from monthly data) while 

variations of MIDAS and MF-DLFM – models 7 – 9 - are monthly models using mixed 

actual monthly and quarterly data. 

 

1.  AR - The selected model for real GDP growth (Y52) is an AR (1) – based on 

Box-Jenkins methodology.  For the GDP deflator growth rate (Y53), the 

estimated model is an AR (2). All coefficients are significant at the five percent 

level. Determination coefficients are 0.49 for real GDP, and 0.67 for the GDP 

deflator (Appendix A1).  

2. VAR - The estimated bivariate model for Y52 and Y53 keeps lags 1 and 2 

(Appendix A2). Likelihood ratio test, final prediction error, Akaike information 

criterion, Schwarz information criterion, Hannan-Quinn information criterion all 

select lag order of 2.  

3. LEI - This includes the Leading Economic Indicator Index for the Philippines in 

separate autoregressive distributed lag (ARDL) models for Y52 and Y53 

(Appendix A3).  Schwarz criterion is used to select the model with a possible 

maximum lag of 8 quarters. Selected models are ARDL(1, 1) for real GDP 

growth, and ARDL (2, 0) for GDP deflator.  Determination coefficients are 0.58 

for real GDP growth, and 0.67 for GDP deflator growth. 

4. Bridge - Separate regressions are done for Y52 and Y53 on the indicator variables 

described earlier, with correction for error serial correlation.  The monthly data 

for the indicators are converted to quarterly figures by averaging, which are then 

used in estimating the bridge equations. Monthly indicators entering into the 

equations are selected using forward stepwise method with stopping criterion of a 
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p-value of 0.1 (Appendix A4).  Real GDP equation includes Y01 (industrial 

production), Y03 (exports), Y04 (government expenditures), Y07 (real stock 

prices), and Y09 (time deposit rate-savings deposit rate), in addition to lagged real 

GDP and a constant term.  On the other hand, in addition to lagged GDP deflator 

and a constant term, Y21 (consumer price index) and Y23 (wholesale price index) 

are selected in the equation for GDP deflator. Determination coefficients are 0.74 

for real GDP growth, and 0.89 for GDP deflator growth. 

5. PCA with Two Groups - Principal components are calculated separately from the 

two groups of monthly indicators for real GDP growth and the GDP deflator 

growth,  as in Klein & Park (1993,1995), Klein & Ozmucur (2002,2004,2008), 

and Mariano & Ozmucur (2015a, 2015b).  Separate regressions are then 

performed for Y52 and Y53 on the corresponding group of principal components.  

The first principal component explains 31% of the variation in 10 indicators for 

real GDP growth. First seven principal components can explain over 90% of the 

variation in those ten indicators. Factor loadings indicate that the first principal 

component stands for international trade, exports (Y02) and imports (Y03), the 

second principal component for real exchange rate (Y08), the third principal 

component for the difference between time deposit rate and savings deposit rate 

(Y09), the fourth component for real government expenditures (Y04), the fifth 

component  for real money supply (Y05), the sixth component for gross 

international reserves (Y06), and the seventh component for industrial production 

(Y01).  

 

On the other hand, the first principal component explains 40% of the variation in 

the 8 indicators for GDP deflator growth and the first five principal components 

can explain over 90% of the variation in those indicators. Factor loadings indicate 

that the first principal component stands for consumer prices (Y21), producer 

prices (Y22), wholesale prices (Y23), and retail prices (Y24),   the second 

component for the exchange rate (Y25), the fourth component for the difference 

between time deposit rate and savings deposit rate (Y29), and the fifth component  

for  money supply (Y26). The third principal component stands for three 

indicators, namely money supply (Y26), the difference between time deposit rate 
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and savings deposit rate (Y29) and the difference between the Treasury bill rate 

and the US Treasury bill rate (Y30). 

 

The relationship between real GDP growth and the principal components was 

established with the stepwise least squares (Appendix A5). The first principal 

component and the first lag of the dependent variable are included in the equation. 

Other principal components and the dependent variable with lags 2 to 4 lags are 

selected using forward selection method. Those indicators which are significant at 

the ten percent level are kept in the equation. It should be noted that those who 

did not make the first cut (those who account for 90% of the variation in 

indicators) may turn out to be significant in these bridge equations. For example, 

real GDP growth equation includes Z09 (ninth principal component), in addition 

to Z01, Z03 and Z04. This equation, which also includes the first and third lags of 

Y52, has a determination coefficient of 0.75. GDP deflator growth equation 

includes sixth and seventh principal components (Z26 and z29), in addition to 

first and second principal components (Z21, Z22). The equation, which also 

includes the first and fourth lags of Y53, has a determination coefficient of 0.90. 

 

6. Bridge with PCA  -  This is a variation of #5, using as regressors the principal 

components of all indicator variables grouped together (Appendix A6). Real GDP 

growth equation, now, includes Z30, in addition to Z01, Z03, Z04, Z09 and Y52 

(-1). There is a little change in the determination coefficient compared with the 

one in equation with two groups (0.7595 and 0.7549). However, GDP deflator 

growth equation is slightly improved with similar additions. This equation, which 

includes eight principal components and 2 lagged values of the dependent 

variable, has a determination coefficient of 0.94. Adjusted determination 

coefficient is 0.92, compared with 0.89 in the equation with two groups. 

 

7. MIDAS – MIDAS regressions are estimated separately for Y52 and Y53, using 

actual monthly data for the indicator variables (Appendix A7).  Eviews,version 

9.5, software (IHS, 2016) allows one to use Almon, exponential Almon, Beta, and 

step options. Almon lags (polynomial distributed lags) are used in this paper. This 
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option had several advantages for the particular data set at hand. It yielded higher 

determination coefficients, and also required less computation time. Somewhat 

more common options, exponential Almon lags and beta functions, may lead to 

highly nonlinear equations with convergence and computation time issues. Almon 

lag (Almon, 1965, 1968) with a polynomial degree of 3 is used, and a maximum 

of 6 lags are allowed (IHS, 2016). Both real GDP and GDP deflator equations has 

eight monthly indicators. For all eight variables a lag of 3 or more is chosen. This 

is an improvement on our earlier papers (Mariano & Ozmucur, 2015a, 2015b), 

which used unrestricted MIDAS with 2 lags. Almon type of restrictions enable the 

use of more lags without increasing the number of right hand variables hence 

reducing the number of degrees of freedom. Determination coefficients are 0.90 

for real GDP growth and 0.95 for GDP deflator growth. It should be noted that, in 

both equations, there are quite few coefficients which are insignificant.  However, 

alternative equations with fewer variables (omitting variables which are not 

significant) gave forecast results which were inferior to the ones provided from 

these equations. Therefore, these equations with better forecasting power were 

kept as the final set of equations.     

 

8. MIDAS_PCA  -  Variation of #7, with principal components of the indicator 

variables as regressors (Appendix A8). Results are not very different than the 

previous model (MIDAS) in terms of determination coefficients, but there are 

some differences in forecasting performance.   

 

9. DLFM  -  A bivariate mixed-frequency dynamic latent factor model is estimated 

for Y52 and Y53, with two unobserved common factors.  As the first step of 

dynamic factor modeling, all monthly variables are grouped into one. Real 

exchange rate and real money supply are deleted from the first since nominal 

magnitudes of these variables are already in the second group. There were also 

two interest rate differential variables, which appear in both groups. This reduces 

the total number of indicators from 18 in two groups to 14 variables in a single 

group. Real government expenditures (Y04), and time deposit rate and savings 

rate difference (Y09) are also excluded from the original list because of data 

issues. The final list contains the  two quarterly variables of interest (Y52 and 
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Y53) and twelve monthly indicator variables: Y01, Y02, Y03, Y06, Y07, Y10, 

Y21, Y22, Y23, Y24, Y25, and Y26. 

 

The system closely follows Mariano & Murasawa (2003), and extends it by including 

variables related to the general price level.  There are 14 target variables (12 monthly, 2 

quarterly, listed above), and two unobserved common factors (S1 and S6), and two 

specific factors (S11 and S16). Common factors are included in all fourteen measurement 

or observation equations, while specific factors (idiosyncratic components) are included 

in the related equation. For example, specific factor S11 appears in real GDP equation, 

while specific factor S16 appears in GDP deflator equation. Derivation of the form of the 

lags in equations with quarterly and monthly target variables are given in Mariano & 

Murasawa (2003).  All variables are standardized before estimating the model. This has 

the advantage of reducing the number of parameters to be estimated, and determining the 

initial values of some of the variables as zeros (average for the period). Here, exact 

maximum likelihood estimators are computed, despite the longer time required compared 

with some short-cut methods such as the EM algorithm. BFGS (Broyden-Fletcher-

Goldfarb-Shannon) algorithm with Marquart steps are utilized to maximize the likelihood 

function. Convergence was achieved after 82 iterations. Estimated equations using 

standardized variables are given below (details are in Appendix A9): 

Real GDP growth equation: 

Y52 =-0.3069-0.0431*((1/3)*S1+(2/3)*S1(-1))+ S1(-2)+(2/3)*S1(-3)+(1/3)*S1(-4))-
0.000967*((1/3)*S6+(2/3)*S6(-1)+S6(-2)+(2/3)*S6(-3)+(1/3)*S6(-4))+((1/3)*S11+(2/3)*S11(-1)+S11(-
2)+(2/3)*S11(-3)+(1/3)*S11(-4))+[RES. VAR.= EXP(-3.083)] 
 

GDP deflator growth equation: 
 
Y53 =-0.3908+0.54379*((1/3)*S1+(2/3)*S1(-1))+ S1(-2)+(2/3)*S1(-3)+(1/3)*S1(-
4))+0.000255*((1/3)*S6+(2/3)*S6(-1)+S6(-2)+(2/3)*S6(-3)+(1/3)*S6(-4))+((1/3)*S16+(2/3)*S16(-1)+S16(-
2)+(2/3)*S16(-3)+(1/3)*S16(-4))+[ RES. VAR.=  EXP(-3.2547)] 
 

 

Equations for monthly indicators also include exogenous variables (lagged dependent 

variables), in addition to common factors S1 and S6. The number of lags are determined 

with the help of autoregressive equations prior to building the state space model. For 

example, Y01 (industrial production) includes lags 1 and 2, and Y02 (merchandise 

imports) include lags 1, 4, and 5.  
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Y01 ---  Industrial production index growth rate (year-on-year) 
Y01 = -0.0436*S1-0.0016*S6+ 0.5045*Y01(-1)+0.2120*Y01(-2)+[ RES. VAR.= EXP(-1.2985)] 

 

 

Y02 ---  Merchandise Imports growth rate (year-on-year) 
Y02= 0.13085*S1-0.002149*S6+0.41157*Y02(-1)+0.28401*Y02(-4)-0.16893*Y02(-5)+[ RES. VAR.= EXP(-
1.410006)] 

 

 Y03 ---  Merchandise Exports growth rate (year-on-year) 
Y03 = 0.12419*S1-0.002313*S6+0.2745*Y03(-1)+ 0.2516*Y03(-2)+ [RES. VAR.= EXP(-1.3862)] 

 

Y06---     World trade volume growth rate (year-on-year) 
Y06 = 0.2243*S1-0.0018599*S6+0.25413*Y06(-1)+ 0.2451*Y06(-2)+0.4416*Y06(-3)-0.2333*Y06(-4)+[ RES. 
VAR.= EXP(-2.2223)] 
 

 

Y07 ---  Real Stock Price Index growth rate (year-on-year) 
Y07 = -0.19767*S1-0.0002923*S6+1.1261*Y07(-1)- 0.2147*Y07(-2)+[ RES. VAR.= EXP(-2.7318)] 

 

Y10 --Treasury Bills rate (91 Day)-US treasury 3-month bill rate, year-on-year difference   
Y10 = 0.11053*S1+0.0001563*S6+0.94088*Y10(-1)+[ RES. VAR.= EXP(-2.86688)] 
 

Y21 ---  Consumer Price Index growth rate (year-on-year) 
 Y21 = 0.59905*S1+0.00046*S6+0.8159*Y21(-1)- 0.021172*Y21(-2)+ [RES. VAR.= EXP(-4.6344)] 

 

Y22 ---  Producer Price Index, growth rate (year-on-year) 
Y22 = 0.17209*S1-0.000094331172*S6+0.94388*Y22(-1)+[ RES. VAR.= EXP(-2.7506)] 

 

Y23 ---  Wholesale Price Index (Metro Manila) growth rate (year-on-year) 
Y23 = 0.27944*S1-0.000158559*S6+1.2710*Y23(-1)- 0.4092*Y23(-2)+  [RES. VAR.= EXP(-3.07542)] 

 

Y24 ---  Retail Price Index growth rate (year-on-year) 
Y24 = 0.60569*S1+0.00027127*S6+0.70901*Y24(-1)+ 0.02889*Y24(-2)+ [RES. VAR.= EXP(-3.5733)] 
 

 

Y25 ---  Exchange rate, growth rate (year-on-year) 
Y25 = 0.05251*S1+0.00007894*S6+1.34411*Y25(-1)- 0.3937*Y25(-2)+ [RES. VAR.= EXP(-3.5915)] 

 

Y26 ---  Money supply (M1) growth rate (year-on-year)  
 Y26 = -0.3777*S1-0.000358*S6+0.7227*Y26(-1)+ 0.2614*Y26(-2)-0.18230*Y26(-4)+[ RES. VAR.= EXP(-
2.0635)] 

 

Common factors S1 and S6 form a first order vector autoregressive system (VAR(1)), 

and specific factors are represented as random walks.  

  

Transition (or state) equations: 
 
S1 =0.7664*S1(-1)-0.00028*S6(-1)-0.02119+[ RES. VAR.= EXP(-2.8259)] 
S6 =-8.5390*S1(-1)+0.7895*S6(-1)-0.2046+[ RES. VAR.= EXP(9.5671)] 
S11 = S11(-1)+[ RES. VAR.= EXP(-4.6756)] 
S16 =S16(-1)+ [RES. VAR.= EXP(-6.7478)] 
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Results indicate that common factors with lags and specific factors are significant in the 

model. Lagged dependent variables also play an important role (Appendix 9A). 

 

The estimated models are used to calculate one-period ahead forecasts over the sample 

period.  For illustrative purposes, the actual values and one-step ahead forecasts for the 

mixed-frequency dynamic latent factor model are presented in Figures 4a, 4b, and 4c 

below. 
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Figure 4a. DLFM One-step-ahead growth forecasts (red-actual,green-predicted, 

blue-residuals)  for Real GDP (Y52) and GDP Deflator (Y53), 2000 - 2015 
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Figure 4b. DLFM One-step-ahead growth forecasts (red-actual,green-predicted, 

blue-residuals)  
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Figure 4c. DLFM One-step-ahead growth forecasts (red-actual,green-predicted, 

blue-residuals)  
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Table 1 summarizes the mean absolute errors and root mean square errors of the 

alternative estimated models based on one-period-ahead static forecasts.  The results 

indicate that the mixed-frequency dynamic latent factor model has the lowest mean 

absolute error - .22% for real GDP growth rate, and 0.28% for the GDP deflator growth 

rate.  Corresponding statistics are 0.45%, and 0.37% for MIDAS, which ranks the second. 

Principal components, and bridge equations follow these two models.  The benchmark 

AR and VAR models show the biggest errors.  Note also LEI shows little improvement, 

in performance relative to the benchmark models. 
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Table 1.  Performance Indicators (mean absolute error and root mean square error)  

    One-period in-sample simulation, 2000 - 2015 

 

  

Real GDP 
growth  

GDP Deflator 
growth GDP growth 

AR MAE 0.88 
 

0.76 
 

1.15 
 AR RMSE 1.22 

 
1.07 

 
1.55 

 
        VAR MAE 0.84 

 
0.77 

 
1.13 

 VAR RMSE 1.04 
 

1.06 
 

1.42 
 

        LEI MAE 0.84 
 

0.75 
 

1.10 
 LEI RMSE 1.11 

 
1.05 

 
1.42 

 
        Bridge MAE 0.68 

 
0.53 

 
0.78 

 Bridge RMSE 0.87 
 

0.68 
 

0.96 
 

        PCA with 2 groups MAE 0.67 
 

0.51 
 

0.79 
 PCA with 2 groups RMSE 0.86 

 
0.64 

 
0.97 

 
        Bridge with PCA MAE 0.66 

 
0.45 

 
0.66 

 Bridge with PCA RMSE 0.84 
 

0.56 
 

0.83 
 

        MIDAS MAE 0.45 
 

0.37 
 

0.49 
 MIDAS RMSE 0.55 

 
0.44 

 
0.64 

 
        MIDAS_PCA MAE 0.43 

 
0.36 

 
0.49 

 MIDAS_PCA RMSE 0.56 
 

0.42 
 

0.61 
 

        DLFM MAE 0.22 
 

0.28 
 

0.36 
 DLFM RMSE 0.26 

 
0.35 

 
0.45 
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To test the statistical significance of the superior forecasting performance of MF-DLFM 

relative to the other models, we apply the Diebold-Mariano test (1995) to compare the 

forecast accuracy of MF-DLFM relative to the alternative models, taken one at a time.   

The test results are indicative of the significantly lower errors (less than -1.96 for a 5% 

level of significance) for the dynamic factor model (Table 2), with the exception of 

MIDAS model for the GDP deflator growth rate. Although, errors are lower for DLFM as 

shown on Table 1, the difference is not significant at the 5% level.        

 

More work is required for a more definite conclusion on this issue.  Further analysis and 

empirical applications are needed to settle this issue more definitively – especially in the 

direction of introducing more elaborate error structures, multiple latent common factors, 

and other exogenous indicators in the dynamic latent factor model. Alternative variations 

of MIDAS will also be explored and the specification of the other modeling strategies can 

also be refined further for improved forecasting performance.  
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Table 2. Diebold-Mariano Statistics  

Diebold-Mariano Statistics (errors in dynamic factor model compared with 
errors in an alternative model)  

 

Absolute value of 
errors Squares of errors 

    Gross Domestic Product Growth (y-o-y) 
  DM_Y51_AR -3.52 
 

-2.55 
DM_Y51_BRIDGE -6.22 

 
-7.24 

DM_Y51_BRIDGEPCA -4.93 
 

-6.01 
DM_Y51_LEI -5.22 

 
-3.93 

DM_Y51_MIDAS -2.83 
 

-4.33 
DM_Y51_MIDASPCA NA 

 
-11.29 

DM_Y51_PCA -6.04 
 

-5.42 
DM_Y51_VAR -6.91 

 
-4.52 

    Real Gross Domestic Product Growth (y-o-y) 
  DM_Y52_AR -5.75 
 

-2.50 
DM_Y52_BRIDGE -5.46 

 
-3.58 

DM_Y52_BRIDGEPCA -5.48 
 

-4.38 
DM_Y52_LEI -23.08 

 
-5.74 

DM_Y52_MIDAS -3.24 
 

-3.77 
DM_Y52_MIDASPCA -9.05 

 
-6.94 

DM_Y52_PCA -5.44 
 

-4.51 
DM_Y52_VAR -10.73 

 
-5.56 

    GDP Deflator Growth (y-o-y) 
   DM_Y53_AR -7.28 

 
-4.13 

DM_Y53_BRIDGE -2.91 
 

-2.96 
DM_Y53_BRIDGEPCA -3.36 

 
-3.78 

DM_Y53_LEI -7.80 
 

-4.69 
DM_Y53_MIDAS -1.01 

 
-1.08 

DM_Y53_MIDASPCA -4.38 
 

-3.31 
DM_Y53_PCA -2.86 

 
-2.59 

DM_Y53_VAR -7.73 
 

-4.24 
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It is also important for a model to predict turning points. Therefore, several statistics are 

used to see the models’ success in predicting turning point points. Changes in model 

forecast (P(t)-P(t-1)) and the actual A(t)-A(t-1)) are compared to analyze the prediction 

accuracy. These changes are grouped into four (Theil, 1958; Tsay, 2005), as shown 

below:  

Actual is decreasing, and the model predicts a decrease (correct prediction of a turning 

point, n11 out of a total number of n predictions), 

Actual is decreasing, and the model predicts an increase (false prediction of a turning 

point, n12 out of a total number of n predictions),  

 Actual is increasing, and the model predicts a decrease (false prediction of a turning 

point, n21 out of a total number of n predictions), 

Actual is increasing, and the model predicts an increase (correct prediction of a turning 

point, n22 out of a total number of n predictions).  

  
predicted predicted 

  
Down (-) Up(+) 

 
Actual 

Down(-
) n11 n12 n1. 

Actual Up (+) n21 n22 n2. 

  
n.1 n.2 n 

 

The ratio of total correct prediction of turning points= (n11+n22)/n 

The ratio of correct prediction of downturns= n11/n1. 

The ratio of correct prediction of upturns= n22/n2. 

 

All models do relatively well, if the prediction is for the level of GDP, real GDP or the 

GDP deflator. However, not all of them fare well in predicting the turning point in the 

growth rate of these indicators (Table 3).  For example, DLFM model correctly predicts 

87% of turning points in real GDP, while MIDAS predicts 74% of them (Table 3). The 

ratio is 79% for the bridge equation model, and the PCA model. On the other hand, 

DLFM correctly predicts 89% of downturns, and 85% of upturns. Corresponding ratios 

for the MIDAS model are 74% and 68%.     

 



 

30 

 

SMU Classification: Restricted 

 Pearson 2, which is a measure of overall independence between changes in “actual” and 

“prediction” indicate independence for almost all the models (critical value for 95% 

confidence and 1 degree of freedom, for a 2x2 table, is 3.841). Pearson’s Phi coefficient 

(mean square contingency coefficient), which gives the degree of association between 

two dichotomous variables, actual and predicted changes here, is higher for the DLFM 

model. For example, for real GDP growth, Phi coefficient is 0.73 for DLFM, compared 

with 0.47 for the MIDAS model. Phi coefficient is 0.87 for GDP deflator, compared with 

0.42 for the MIDAS model. All in all, DLFM seems to have a bigger edge over other 

models in predicting turning points.  
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Table 3. Turning Point Errors 

Alternative 
models n11 n12 n1. n21 n22 n.1 n.2 n 

 
correct 
total  

correct 
downturn 

correct 
upturn 

Pearson 

2 

Phi 
Coefficient 

Gross Domestic Product Growth (y-o-y) 
         AR 22 10 32 13 16 35 26 61 0.62 0.69 0.62 3.6 0.24 

Bridge 26 6 32 6 23 32 29 61 0.80 0.81 0.79 22.4 0.61 

Bridge_PCA 22 10 32 6 23 28 33 61 0.74 0.69 0.70 14.2 0.48 

LEI 23 9 32 12 17 35 26 61 0.66 0.72 0.65 5.8 0.31 

MIDAS 23 9 32 8 21 31 30 61 0.72 0.72 0.70 11.9 0.44 

MIDAS_PCA 23 9 32 6 23 29 32 61 0.75 0.72 0.72 16.0 0.51 

PCA 25 7 32 6 23 31 30 61 0.79 0.78 0.77 20.1 0.57 

VAR 21 11 32 13 16 34 27 61 0.61 0.66 0.59 2.7 0.21 

DLFM 29 3 32 3 26 32 29 61 0.90 0.91 0.90 39.3 0.80 

GDP Deflator Growth (y-o-y) 
           AR 16 12 28 15 18 31 30 61 0.56 0.57 0.60 0.8 0.12 

Bridge 18 10 28 16 17 34 27 61 0.57 0.64 0.63 1.5 0.16 

Bridge_PCA 21 7 28 14 19 35 26 61 0.66 0.75 0.73 6.6 0.33 

LEI 19 9 28 13 20 32 29 61 0.64 0.68 0.69 4.9 0.28 

MIDAS 21 7 28 11 22 32 29 61 0.70 0.75 0.76 10.5 0.42 

MIDAS_PCA 21 7 28 12 21 33 28 61 0.69 0.75 0.75 9.1 0.39 

PCA 20 8 28 12 21 32 29 61 0.67 0.71 0.72 7.5 0.35 

VAR 17 11 28 15 18 32 29 61 0.57 0.61 0.62 1.4 0.15 

DLFM 27 1 28 3 30 30 31 61 0.93 0.96 0.97 46.2 0.87 
Real Gross Domestic Product Growth (y-o-
y) 

         AR 25 10 35 9 17 34 27 61 0.69 0.71 0.63 8.2 0.37 

Bridge 26 9 35 4 22 30 31 61 0.79 0.74 0.71 20.7 0.58 

Bridge_PCA 25 10 35 3 23 28 33 61 0.79 0.71 0.70 21.5 0.59 

LEI 24 11 35 9 17 33 28 61 0.67 0.69 0.61 6.9 0.34 

MIDAS 26 9 35 7 19 33 28 61 0.74 0.74 0.68 13.5 0.47 

MIDAS_PCA 27 8 35 5 21 32 29 61 0.79 0.77 0.72 20.1 0.57 

PCA 25 10 35 3 23 28 33 61 0.79 0.71 0.70 21.5 0.59 

VAR 24 11 35 8 18 32 29 61 0.69 0.69 0.62 8.5 0.37 

DLFM 31 4 35 4 22 35 26 61 0.87 0.89 0.85 32.7 0.73 

 

________________________________________________ 
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In order to gauge the out-of-sample performance, estimations were done using rolling 

samples with 44 observations, which gave 20 quarterly and 80 monthly forecasts. A 

model is first estimated using 2000Q1-2010Q4 period data, and a forecast is obtained for 

2011Q1. Then, the same model is estimated using 2000Q2-2011Q1 period, and a forecast 

for 2011Q2 is obtained. Thess rolling calculations continued to get to the final data point 

2015Q4 (using the estimation period 2005Q1-2015Q3). Results are given in Table 4. The 

dynamic latent factor model has lowest errors in out-of-sample forecasts also.  

 

Table 4.  Performance Indicators (out-of-sample, mean absolute error and root 

mean square error) 

  

Real GDP 
growth  

GDP Deflator 
growth 

GDP 
growth 

AR MAE 0.81 
 

1.30 
 

1.00 

 
RMSE 0.97 

 
1.60 

 
1.41 

       VAR MAE 0.78 
 

1.35 
 

1.41 

 
RMSE 0.90 

 
1.63 

 
1.89 

       LEI MAE 1.06 
 

1.33 
 

1.07 

 
RMSE 1.23 

 
1.62 

 
1.44 

       Bridge MAE 1.42 
 

1.59 
 

1.11 

 
RMSE 1.54 

 
1.78 

 
1.40 

       PCA with 2 
groups MAE 2.39 

 
0.96 

 
3.35 

 
RMSE 2.39 

 
0.96 

 
3.35 

       Bridge with PCA MAE 2.28 
 

0.70 
 

2.98 

 
RMSE 2.28 

 
0.70 

 
2.98 

       MIDAS MAE 0.41 
 

0.35 
 

0.56 

 
RMSE 0.56 

 
0.43 

 
0.72 

       MIDAS_PCA MAE 0.52 
 

0.54 
 

0.61 

 
RMSE 0.73 

 
0.64 

 
0.78 

       DLFM MAE 0.23 
 

0.29 
 

0.38 

 
RMSE 0.28 

 
0.36 

 
0.47 
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5. CONCLUSION  
 

This paper uses mixed-frequency data to estimate dynamic latent factor models for high-

frequency forecasting of GDP growth in the Philippines.  Kalman filtering procedures are 

then applied to estimate unknown parameters in this state-space formulation and perform 

signal extraction to calculate estimates of the latent factor.  Our results based on static 

simulations and turning point analysis of estimated models indicate that the mixed 

dynamic latent factor model performs better than the MIDAS regression, bridge 

equations with and without principal components,  and the benchmark autoregressive 

models.  Further comparison analysis and empirical applications are needed to settle this 

issue more definitively – especially in the direction of introducing more elaborate error 

structures, multiple latent common factors, and other exogenous indicators in the high-

frequency models for the Philippines.  Future work also will cover dynamic multi-period 

simulations of the estimated models as well as extensions to other selected countries in 

Southeast Asia. 
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