


Specifying and estimating vector autoregressions
using their eigensystem representation

Leo Krippner∗

4 May 2024

Abstract
This article introduces the principles and mechanics of the eigensystem vector autore-

gression (EVAR) framework, where a VAR may be specified and estimated directly via its
eigenvalue and eigenvector parameters. Using explicit constraints on the eigensystem per-
mits control of a VAR’s allowable dynamics, which is illustrated empirically with standard
and time-varying VAR estimations specified to be always non-explosive.
JEL classification: C13, C22, C32
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1 Introduction

In this article, I develop a framework that allows vector autoregressions (VARs) to be specified
and estimated directly from their eigenvalue and eigenvector parameters. What I will hereafter
refer to as the eigensystem VAR (EVAR) permits explicit control of the allowable dynamics for
a VAR by using constraints on its eigensystem which, aside from unit roots imposed in the case
of cointegration, is not feasible with VARs estimated via their coeffi cients (hereafter CVARs).

To my knowledge, the EVAR has no precedent in the literature. That is, while it is routine
in applications to check the stability of an estimated CVAR by calculating the eigenvalues of its
associated companion matrix (and the eigenvectors could also be calculated), I have not found
any literature that reverses the process; i.e. using the eigensystem to generate the companion
matrix and hence VAR coeffi cients during the EVAR estimation. As referenced in my overview
of VARs and their eigensystem in section 2, there are two applied mathematics articles that
detail the eigensystem form of a VAR underlying my EVAR framework specification, but neither
develops a framework for estimation.

Following my development of an estimation method in section 3, I illustrate the empirical
application of the EVAR in section 4, i.e. estimating standard and time-varying VARs subject to
eigenvalue magnitude constraints that guarantee non-explosive dynamics at all times, compared
to explosive dynamics that occur in the analogous CVARs. My conclusion in section 5 outlines
other potential applications of the EVAR framework.

2 VARs and their eigensystem

A standard reduced-form VAR may be specified as:

yt = α+ β1yt−1 + . . .+ βP yt−P + εt (1)
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where yt is an N × 1 vector of data at time t, yt−p is data at time t− p with p ranging from 1
to P , α is a vector of constants, βp are N ×N matrices of coeffi cients associated with yt−p, and
εt is a vector of residuals with an assumed multivariate normal distribution εt ∼ N (0N×1,Ωε),
with 0N×1 the N × 1 vector of zeros and Ωε the N ×N covariance matrix.

The companion form of a VAR is its equivalent re-expression as an NP -variable first-order
VAR, i.e.:

Yt = A+BYt−1 + Et (2)

where Yt =
[
y′t, . . . , y

′
t−P+1

]′, A = [α′, 0, . . . , 0]′, Yt−1 =
[
y′t−1, . . . , y

′
t−P
]′, Et = [ε′t, 0, . . . , 0]′

(all NP × 1 vectors), and Et ∼ N (0NP×1,ΩE) with Ωε in the upper-left corner being the only
non-zero part of the NP ×NP covariance matrix ΩE . B is the NP ×NP companion matrix:

B =

[
β

INP−N 0NP×N

]
(3)

where β = [β1, . . . , βP ], an N ×NP matrix, and INP N and 0NP×N are respectively the identity
matrix and a zero matrix with dimensions given in their subscripts. Lütkepohl (2006) chapter
2 and Hamilton (1994) chapter 11 are standard references for the aspects outlined above.

The eigensystem representation of B is:

B = V DV −1 ; D = diag ([D1, . . . , DNP ]) ; V = [V1, . . . , VNP ] (4)

where D and the V are respectively the eigenvector and eigenvector matrices, both NP ×NP .
I adopt the standard assumption of unique eigenvalues, which is also consistent with my sub-
sequent empirical application, so the NP eigenvalues [D1, . . . , DNP ] on the leading diagonal are
the only non-zero entries of D. From Wilkinson (1965) p. 33-34, as referenced by Neumaier and
Schneider (2001) in the context of decomposing a CVAR into its eigensystem components, V
has the following columns:

Vk =


SkD

P−1
k
...

SkDk

Sk

 with Sk =


S1,k
...

SN−1,k

1

 (5)

Each Sk is an N ×1 vector and I have set the last elements of all Sk to 1 as the most convenient
eigenvector normalization for this article.

The exposition above shows that NP eigenvalues plus (N − 1)NP unique values of S =
[S1, . . . , SNP ], i.e. Su which excludes the normalizing row of ones, map exactly to the N2P
coeffi cients in β, and vice versa. An unconstrained VAR can therefore be estimated equivalently
via its coeffi cients or its eigensystem parameters. Boshnakov (2002) mentions the potential for
the latter but does not develop a framework for doing so. Additionally, as noted in the following
section, an unconstrained EVAR estimation would be computationally ineffi cient relative to a
CVAR estimation.

3 VAR and EVAR estimation

The log-likelihood function L (θ,Ωε) for a VAR conditioned on the initial P observations of the
N × (P + T ) dataset {y}T1−P is (e.g. see Hamilton (1994) p. 293):

L (θ,Ωε) = −NT
2

log (2π)− T

2
log (det [Ωε])−

1

2

T∑
t=1

ε′tΩ
−1
ε εt (6)
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where the parameter set θ determines the residuals εt = yt− ŷt (θ) and Ωε = 1
T

∑T
t=1 ε

′
tεt. With

θ = β and therefore εt = yt − βYt 1, the linear form of L (θ,Ωε) with respect to the parameters
allows analytic maximization, and the closed-form solution for β may be estimated using a series
of OLS regressions (e.g. see Hamilton (1994) pp. 293-96).

Conversely, the EVAR is inherently non-linear with respect to the eigensystem parameters
in D and S, so maximizing L (θ,Ωε) requires computationally expensive numerical methods.
An EVAR should therefore only be applied when eigensystem constraints are considered to
provide net benefits relative to a CVAR, such as the non-explosiveness constraint examples in
this article. For that application, the constrained maximization, argmax[θ,Ωε]L (θ,Ωε) subject
to all |Dk| < γ, may be converted to unconstrained optimization using a parameter set θ =
[x,Wu] which, as detailed below, produces the eigensystem parameters [D (x|γ) , Su (Wu)], hence
β [D (x) , Su (Wu)] as outlined in section 2, and therefore εt = yt − β [D (x|γ) , Su (Wu)]Yt−1.

To allow for the general case of eigenvalues being either complex conjugate pairs (CCPs) or
real values, they should fall within the magnitude constraint defined by a circle with radius γ
in the complex plane, as illustrated in panel 2 of figure 1. This constraint may be achieved by
mapping unconstrained real-valued pairs (xk, xk+1) to coeffi cients

(
φk, φk+1

)
within a generalized

version of the standard AR(2) stability triangle, as illustrated in panel 2 of figure 1, which are

then converted to eigenvalue pairs (Dk, Dk+1) = 1
2φk±

1
2

√
φ2
k + 4φk+1 (i.e. the quadratic solution

for AR(2) eigenvalues from AR(2) coeffi cients; e.g. see Hamilton (1994) p. 10).

Figure 1: The generalized AR(2) triangle is used to obtain real or complex conjugate pairs of
eigenvalues with an arbitrary magnitude constraint of γ. In this example γ = 0.95.

The generalized AR(2) triangle that maps
(
φk, φk+1

)
to (|Dk| , |Dk+1|) < γ is defined by∣∣∣∣12φk ± 1

2

√
φ2
k + 4φk+1

∣∣∣∣ < γ, which results in the lines defined by |φk| < 2γ (the triangle base)

and −γ2 < φk+1 < γ2 − γ |φk| (the allowable height given φk).
(
φk, φk+1

)
pairs within the

generalized AR(2) triangle are obtained from scaled shifted logistic functions of (xk, xk+1), i.e.:

φk = 2γ

(
2

1 + exp (−xk)
− 1

)
(7a)

φk+1 =
γ |φk|

1 + exp (−xk+1)
− γ2 (7b)

When NP is odd, the last eigenvalue must be real, obtained as DNP = γ/ [1 + exp (−xNP )].
There is no constraint on the parameters Su for the application of the EVAR framework in

this article, so an unconstrained real-valued (N − 1)×NP matrix Wu is used to generate CCPs
or real values of Su according to their corresponding eigenvalues. That is, Su = WuU where, if
NP is even, U is the block-diagonal matrix:

U = diag
([

D1 D2

1 1

]
, . . . ,

[
DNP−1 DNP

1 1

])
(8)
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Hence, each pair of real vectors [Wu,k,Wu,k+1] multiplied into U gives [Wu,k,Wu,k+1]U =
[Wu,kDk +Wu,k+1,Wu,k+1Dk+1 +Wu,k+1], which are CCPs when (Dk, Dk+1) is a CCP, and
real pairs when (Dk, Dk+1) is a real pair. If NP is odd, the last diagonal element of U is the
real eigenvalue DNP .

4 Empirical application

Figure 2 and table 1 illustrate the first example of applying the EVAR framework to end-quarter
United States data for unemployment u, annual CPI inflation π, and the 3-month Treasury bill
rate r (all from https://fred.stlouisfed.org). The sample is from March 1948 (the first complete
period) to March 1980, which I have deliberately selected to make the comparisons most visually
apparent. To ensure that all differences in the results are attributable only to the eigenvalue
constraints, for all estimations I use mean-adjusted data (e.g. see Lütkepohl (2006) pp. 83-85,
so yt = yt−µ = [ut, πt, rt]

′− [µu, µπ, µr]
′ and α is set to 0), and the imposed lag length is P = 2

(as suggested by the Schwatz criterion for the CVAR).

Figure 2: Forecasts from CVAR and EVAR estimations using the March 1948 to March 1981 sample.

The CVAR estimated with OLS results in an explosive model, as apparent from the forecasts
in panel 1 of figure 2. The EVARs estimated with quasi-Newton optimization, with forecasts
in the remaining panels of figure 2, use: (1) a local-to-unity constraint γ = 1 + 1/T , which
ensures only mildly explosive dynamics (e.g. see Phillips and Magdalinos (2007) in the univariate
context); (2) a unit constraint, which ensures non-explosive dynamics; and (3) a constraint less
than unity, which ensures mean-reverting dynamics.

The right side of table 1 compares the eigensystem calculated from the CVAR estimation to
the eigensystem from the EVAR estimation with γ = 0.98. The most notable difference is the
largest CVAR real eigenvalue of 1.04 versus 0.98 for the EVAR (i.e. essentially equal to γ), which
accounts for the distinctly different dynamics of explosiveness versus mean-reversion in figure
2. However, the left side of table 1 shows that the differences between the CVAR coeffi cients
and the coeffi cients calculated from the EVAR estimation are small and non-systematic. Hence,
it is not apparent how the eigensystem of a VAR could be explicitly controlled via coeffi cient
constraints in a CVAR.
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Table 1: Coeffi cients and eigensystems for CVAR and EVAR γ = 0.98 estimations

CVAR coeffi cient estimates eigensystem from CVAR
β D1 & D2,3 & D4,5 & D6 &

β1 β2 Su,1 Su,2,3 Su,4,5 Su,6
1.35 -0.03 -0.04 -0.46 0.05 0.06 1.04 0.72±0.22i 0.59±0.20i 0.19
-0.32 1.19 0.16 0.34 -0.40 0.12 0.34 -1.81±0.71i -1.10±0.66i 0.48
-0.19 0.03 1.29 0.22 -0.01 -0.29 1.23 1.50±0.44i -1.36±1.65i 1.38

coeffi cients from EVAR EVAR eigensystem estimates
β D1 & D2 & D3,4 & D5 & D6 &

β1 β2 Su,1 Su,2 Su,3,4 Su,5 Su,6
1.35 -0.03 -0.04 -0.45 0.06 0.07 0.98 0.73 0.66±0.23i 0.58 0.24
-0.31 1.20 0.17 0.32 -0.40 0.12 0.72 -3.36 -1.86±1.34i -2.01 0.82
-0.18 0.03 1.30 0.16 -0.02 -0.31 1.51 -1.25 0.86±2.92i -1.51 2.03

Figures 3 and 4 respectively illustrate the results from a time-varying (TV) CVAR and a TV-
EVAR estimated over the sample from March 1948 to September 2008 (which avoids changes to
the data-generating process for interest rates when they were constrained by the lower bound).
For clarity and comparability, I use classical estimations with minimal parametrization, and I
fix all aspects other than the state equation dynamics. Hence, based on the specification noted
in Lubik and Matthes (2015), the state and measurement equations for the TV-CVAR are:

vec
(
β′t
)

= vec
(
β′t−1

)
+ ηt ; ηt ∼ N (0, κIP )

yt =
(
IN ⊗ Y

′
t−1

)
vec
(
β′t
)

+ νt ; νt ∼ N (0,Ων)
(9)

where vec
(
β′t
)
is the N2P × 1 vector of βt coeffi cients,

(
IN ⊗ Y

′
t−1

)
vec
(
β′t
)
is the N × N2P

VAR data in seemingly unrelated regression form, κ = 0.001 is a single calibrated rate for the
independent random-walk diffusions underlying the evolution of βt, and the initial state variance
matrix is the N2P identity matrix. The initial values for βt, the lag length P = 2, and the fixed
value for Ωv are those for a CVAR estimation over the full sample. I estimate the TV-CVAR
with the Kalman filter. Panel 1 of figure 3 plots, for clarity, just the three diagonal coeffi cients
of β1,t (i.e. the own-variable first-lag coeffi cients), and panel 2 plots the three largest eigenvalues
magnitudes associated with βt. The largest magnitude often evolves above 1, indicating that
the VAR estimate in these periods is explosive.

The analogous TV-EVAR is specified as:

θt = θt−1 + ηt ; ηt ∼ N (0, κIP )
yt =

(
IN ⊗ Y ′t−1

)
vec {β [D (xt|γ = 1) , Su (Wu,t)]}+ νt ; νt ∼ N (0,Ων)

(10)

where θt =
[
xt,
{
vec
(
W ′u,t

)′}]′, an N2P × 1 vector, and the eigenvalue magnitude constraint

γ = 1 imposes non-explosive dynamics for the EVAR at all points in time. All other aspects are
as for the TV-CVAR, including the initial values for [xt,Wu,t] that are calculated to replicate
the initial βt for the TV-CVAR . The measurement equation is now non-linear, so I estimate
this model with the extended Kalman filter, i.e. by linearizing β [D (xt) , Su (Wu,t)] at each step
t using a numerically calculated Jacobian with respect to the state variables.
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Figure 3: Estimated time series of coeffi cients and eigenvalue magnitudes for the TV-CVAR. Note that
CCP eigenvalue magnitudes overlap.

For the EVAR, panels 1 to 3 of figure 4 respectively plot the first three state variables, the
three largest eigenvalues, and the three diagonal coeffi cients of β1,t from β [D (x) , Su (Wu)]1,t.
The largest eigenvalue magnitude always remains below 1, consistent with the constraint γ = 1,
indicating that the VAR estimate in all periods remains non-explosive.

Figure 4: Estimated time series of state variables, eigenvalue magnitudes, and coeffi cients for the
TV-EVAR. Note that CCP eigenvalue magnitudes overlap.

5 Conclusion

Specifying and estimating VARs directly from their eigenvalue and eigenvector parameters, as
developed in this article, provides a unique framework for controlling the allowable dynamics
of estimated VARs in ways that should prove useful for economic applications. For example,
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I illustrate how otherwise explosive forecasts from a CVAR may be avoided using eigenvalue
magnitude constraints within an EVAR. Straightforward extensions to the EVAR application in
this article are imposing that all eigenvalues be real, to avoid pronounced oscillatory dynamics,
and testing zero and/or repeated eigenvalue restrictions to obtain parsimonious models. A
related extension is imposing appropriate restrictions on the eigenvector parameters within the
EVAR. With further development, the EVAR framework also offers an avenue for structural
VAR identification, i.e. by using eigensystem specifications to control the allowable variable
inter-relationships in ways consistent with economic principles.
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