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Abstract

This article introduces the eigensystem autoregression (EAR) framework, which
allows an AR model to be specified, estimated, and applied directly in terms of
its eigenvalues and eigenvectors. An EAR estimation can therefore impose various
constraints on AR dynamics that would not be possible within standard linear
estimation. Examples are restricting eigenvalue magnitudes to control the rate
of mean reversion, additionally imposing that eigenvalues be real and positive to
avoid pronounced oscillatory behavior, and eliminating the possibility of explosive
episodes in a time-varying AR. The EAR framework also produces closed-form AR
forecasts and associated variances, and forecasts and data may be decomposed into
components associated with the AR eigenvalues to provide additional diagnostics
for assessing the model.
JEL classification: C22, C53, C63
Keywords: autoregression; lag polynomial; eigenvalues; eigenvectors; companion

matrix

1 Introduction

In this article, I develop a framework for specifying, estimating, and applying an autore-
gression model (AR) explicitly using its associated eigenvalues and eigenvectors. What
I will hereafter refer to as the eigensystem AR (EAR) framework therefore allows AR
dynamics to be structured in ways that should prove useful for theoretical and empirical
time series applications, such as in the collection of examples I introduce further below,
but which would not be possible within ARs specified and estimated as a linear system.
As context to the above, an AR(P ) linearly relates a variable to its own P lagged values

via a coeffi cient vector φ = [φ1, . . . , φP ], i.e. yt = α + φ1yt 1 + . . . + φPyt P + εt. That
specification allows conditional maximum likelihood estimates to be obtained via Ordinary
Least Squares (OLS), e.g. see Hamilton (1994) chapter 5, and so I will hereafter refer to
such a specification and its estimation as an OLS AR (OAR). The nature of the dynamics
for an OAR is determined by its eigenvalues λ = [λ1, . . . , λP ], which may be obtained by
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factoring the polynomial associated with the AR or using the companion matrix formed
with the estimated AR coeffi cient vector, e.g. see Hamilton (1994) Appendix 1.A. For
example, if all AR eigenvalues have an absolute value less than 1, then the OAR is
stationary and therefore has mean-reverting dynamics. If any eigenvalue has an absolute
value greater than 1 then the OAR has explosive dynamics, which may be moderate in
the sense of an AR(1) with φ1 = 1 + c/kT as in Phillips and Magdalinos (2007) or local to
unity if kT = T . The intermediate case is an OAR with a unit root, which corresponds to
an eigenvalue with an absolute value of 1. In addition to AR dynamics being stationary,
unit root, or explosive, the presence of complex or negative real eigenvalues will overlay
oscillatory dynamics in some form.
The EAR framework essentially works as the reverse of the OAR description above.

That is, the AR(P ) is specified directly via P eigenvalues within lag polynomial eigenvalue
factors, and their product is calculated using vector convolution to obtain the coeffi cients
for the AR(P ). The eigenvalues may therefore be estimated with any equality and/or
inequality constraints. Such eigenvalue constraints cannot generally be achieved with
linear restrictions on the AR coeffi cients within an OAR.1

Because the eigenvalues of an AR determine the nature of its dynamics, as discussed
earlier, EAR estimation may therefore be structured to deliver allowable AR dynamics
as may be required and/or desired for the task at hand. Examples illustrated in this
article include EAR estimations with the following constraints: (1) all |λk| ≤ 1 + 1/T , to
ensure that any explosiveness is local to unity; (2) all |λk| < 1, to ensure non-explosive
behavior; (3) only real positive eigenvalues to avoid pronounced oscillatory dynamics; (4)
a unit root in complex/oscillatory form, to illustrate imposed non-decaying periodicity;
and (5) repeated real eigenvalues, to illustrate an avenue of imposing parsimony. Any of
the eigenvalue constraints above may be applied in a time-varying context, and I estimate
an example of a time-varying EAR with the constraint |λk| < 1 that ensures non-explosive
dynamics at all times.
The EAR framework also provides a useful basis for applying any AR, including an

OAR once its eigensystem is obtained. That is, closed-form expressions for the forecasts
and impulse response functions (IRFs) of an AR, along with their confidence intervals,
may be obtained for any horizon h, rather than using the typical recursive approach. The
closed-form expressions also show that AR forecasts/IRFs may be decomposed into a sum
of AR(1) and AR(2) components (plus additional components associated with repeated
eigenvalues if that constraint is imposed in an EAR). The data used to estimate the AR
may itself also be decomposed into historical AR(1) and AR(2) components. These his-
torical and forecast/IRF decompositions and their associated variances provide diagnostic
perspectives on the dynamics of an AR that are not apparent from the coeffi cients or the
undecomposed forecasts/IFS.
Literature related to specifying, estimating, and applying an AR via its eigensystem

appears to be limited. In the context of specifying time series models with given spectral
properties, Boshnakov and Iqelan (2009) section 2.1 notes the well-known unique corre-
spondence between an AR and the roots of its associated polynomial equation (i.e. the

1The AR(1) to be discussed in section 2.1 is a trival exception. Another well-known case is that a
real eigenvalue equal to 1 may be imposed by estimating an OAR with first differenced data (which is a
particular case of the EAR estimation method outlined in section 4.3.4). In general, as I show in section
3, the relationship between the coeffi cients and the eigenvalues for an AR is inherently non-linear and
becomes more so as the order is increased.
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inverse of the eigenvalues), but does not develop a framework for model estimation on
that basis. Likewise, the multivariate eigensystem specifications for a vector autoregres-
sion (VAR) outlined in Neumaier and Schneider (2001), Boshnakov (2002), and Krippner
(2010) also do not include estimation frameworks based on the underlying eigensystem
of the VAR. Neumaier and Schneider (2001) shows how a VAR may be re-expressed as a
sum of AR(1) models, which is closely related to the historical decomposition developed
in section 5 of the present article. However, the expressions are not extended to fore-
casts/IRFs or FEVs, and the complex components are not transformed into real AR(2)
components.
The remainder of the article proceeds as follows. Section 2 outlines the aspects of the

AR(1) and AR(2) that form the building blocks for subsequent sections of the article.
Hence, section 3 presents a straightforward generalization of the AR(2) lag polynomial to
specifying an AR(P ) in terms of its eigenvalues and obtaining its coeffi cients. In section
4, I use the AR(1) and AR(2) building blocks to develop the conditional maximum like-
lihood estimation method for the EAR, and again in section 5 to derive the closed-form
expressions for AR forecasts/IRFs, along with AR(1) and AR(2) component decompo-
sitions. Section 6 applies the EAR framework empirically, i.e. it illustrates estimations
with the various eigenvalue constraints mentioned earlier, provides an example of decom-
posing historical data and forecasts into AR(1) and AR(2) components, and shows how a
time-varying AR(P ) may be estimated with non-explosive dynamics. Section 7 concludes
with a brief summary, notes other potential applications that the EAR framework could
be applied to, and then briefly discusses the extension to the multivariate context, i.e.
considering vector autoregression models from an eigensystem perspective. The appen-
dices contain most of the proofs for the propositions in the main text. For this working
paper version, the appendices also contain additional material related to various sections
of the paper, but which is not central to the developments in the main text.

2 AR(1) and AR(2) models

In this section, I provide expositions of the AR(1) and AR(2) that are directly relevant to
subsequent sections of the article. Most aspects are elementary and available in standard
texts, for example Hamilton (1994) chapters 1 and 2. However, I include for the AR(2)
a proposition used later in the article, and also an incidental proposition that I have not
seen elsewhere.

2.1 The AR(1) and its dynamics

The AR(1) is typically represented in OLS regression form as follows:

yt = α + φ1yt−1 + εt (1)

where yt, and yt−1 are respectively the data at times t and t − 1, α is the constant
parameter, φ1 is the AR(1) coeffi cient, and εt are the residuals, which are assumed to at
least have the properties E [εt] = 0, and E [εtεs] = Ωε if t = s and zero otherwise, or more
typically εt is simply assumed to be iid normal, i.e. εt ∼ N (0,Ωε).
An alternative representation of the AR(1) is the lag polynomial form:

(1− φ1L) (yt − µ) = εt (2)
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where L is the lag (or backshift) operator so that Lyt = yt−1 and µ = α/ (1− φ1) is the
process mean (if the model is stationary/mean-reverting, i.e. |φ1| < 1).
The eigenvalue for the AR(1) is λ1 = φ1, which must be real. When λ1 is positive,

the IRF for the AR(1) will be a simple exponential function of the three types in figure 1,
i.e. exponential growth or explosive if λ1 > 1, an exponential decay or stationary/mean-
reverting if 0 < λ1 < 1, and static or unit root in the intermediate case of λ1 = 1. When
λ1 is negative, the magnitude of its component will be as for the positive cases, but it will
oscillate in sign each period (i.e. with a wavelength of 2 periods).

Figure 1: The three panels contain the six types of dynamics for AR(1) models (i.e. explosive,
unit root, and stationary/mean-reverting, each with positive or negative coeffi cients)

represented as IRFs standardized to a maximum of 1.9 units.

2.2 The AR(2) and its dynamics

The AR(2) is typically represented in OLS regression form as follows:

yt = α + φ1yt−1 + φ2yt−2 + εt (3)

where yt, yt−1, and yt−2 are respectively the data at times t, t− 1, and t− 2, and φ1 and
φ2 are the pair of AR(2) coeffi cients.
The representation of the AR(2) in its lag polynomial form is:(

1− φ1L− φ2L
2
)

(yt − µ) = εt (4)

where Lyt = yt−1 and L2yt = yt−2, and µ = α/ (1− φ1 − φ2) is the process mean (if the
model is stationary). From this point onward, I set α and µ to zero for clarity in the
specifications, and this also aligns with my subsequent empirical application to mean-
adjusted data in section 6. However, either α or µ could be included within any of the
AR models in this article as an unconstrained parameter to be estimated in conjunction
with the other AR parameters.
Equation 4 may be factored as for a quadratic polynomial, i.e.:

(1− λ1L) (1− λ2L) yt = εt (5)

where (1− λ1L) and (1− λ2L) are the eigenvalue factors, and:

(λ1, λ2) =
φ1 ±

√
φ2

1 + 4φ2

2
(6)

are the two eigenvalues for the AR(2). The eigenvalues will be real and distinct if φ2
1 +

4φ2 > 0, repeated if φ2
1 + 4φ2 = 0, or a complex conjugate pair if φ2

1 + 4φ2 < 0, i.e.
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(λ1, λ2) =
(
λ1, λ1

)
= 1

2
φ1 ± 1

2
i
√
φ2

1 + 4φ2. Respectively adding and multiplying the two
eigenvalues gives the original pair of AR(2) coeffi cients in terms of the eigenvalue pair,
i.e.:

(φ1, φ2) = (λ1 + λ2,−λ1λ2) (7)

Another representation for the AR(2) is its companion form, i.e.:[
yt
yt−1

]
=

[
φ1 φ2

1 0

] [
yt−1

yt−2

]
+

[
εt
0

]
(8)

which I use in section 5 as part of of the basis for decomposing AR(P ) forecasts/IRFs into
components, as with the IRF examples in figure 2 below. Related to the latter, sections
A.1 to A.3 in appendix A contain details specific to the AR(2) companion form and its
forecasts/IRFs, including the case of repeated eigenvalues.
The types of possible dynamics for an AR(2) may be summarized as in the top two

panels of figure 2,which respectively represent the AR(2) in terms of its coeffi cient point
(φ1, φ2) or its eigenvalue pair (λ1, λ2). An explosive, mean-reverting, or unit root AR(2)
respectively has (φ1, φ2) outside, inside, or on the edge of the plotted “stability triangle”,
which respectively corresponds to at least one eigenvalue outside the unit circle, both
eigenvalues inside the unit circle, or at least one eigenvalue on the unit circle.

Figure 2: Two examples of AR(2) models. The top-left panel plots the AR(2) coeffi cients for
the models as the points (φ1, φ2), along with the AR(2) stability triangle. The top-right panel
plots the pairs of eigenvalues associated with the models, along with the unit circle. The two
bottom panels respectively plot the IRFs from each model, with both standardized to a

maximum of 1.9 units, along with their IRF components.
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A point (φ1, φ2) below the parabola φ2 = −1
4
φ2

1 is a region associated with oscillatory
dynamics. Specifically, the IRF will be the sum of a sine and a cosine function with
wavelengths of 2π/θ periods, where θ is the angle in radians of the complex eigenvalue λ1

in polar form, i.e. θ = cos−1 (Re [λ1/ |λ1|]) or θ = cos−1
(
φ1/

[
2
√
−φ2

])
. The bottom-left

panel contains an IRF example from an oscillatory AR(2) with θ = 0.2π and a wavelength
of 10 periods, and the sine and cosine components of the IRF are also plotted.
A point (φ1, φ2) on or above the parabola corresponds to both eigenvalues being on

the real line, which produces an IRF that is the sum of two AR(1) IRFs, as illustrated in
figure 1, each with one of the eigenvalues as the AR(1) coeffi cient. The bottom-right panel
of figure 2 contains an IRF example from an AR(2) with two positive eigenvalues, and
hence two exponential decay components that produce a “hump-shaped”profile. Note
that a negative real eigenvalue is the limit of oscillatory dynamics with a wavelength of
two periods, which is apparent from a negative number in complex polar form having the
angle θ = π, and hence a wavelength of 2 periods.
The stability triangle may be generalized, as in Proposition 1, to restrict the eigen-

values to be less than an arbitrary magnitude of γ. This generalization accommodates
non-unity constraints on the magnitudes of AR(2) eigenvalues, and therefore on AR(P )
models in general, as will be discussed in section 4. Proposition 2 notes that the region
of the stability triangle (or its generalized version) associated with two real eigenvalues
may be further divided into regions with two negative eigenvalues, one positive and one
negative eigenvalue, or two positive eigenvalues.

Proposition 1 The eigenvalues of an AR(2) may be constrained to an arbitrary magni-
tude γ using the following constraints on φ1 and φ2:

|φ1| < 2γ

φ2 < γ (γ − |φ1|)
φ2 > −γ2 (9)

Proof. See section A.4 of appendix A.

Proposition 2 The region of the AR(2) stability triangle in figure 1 with real eigenvalues,
or the analogous region in the generalized triangle of proposition 1, may be further divided
into regions with two positive eigenvalues (the shaded region in figure 1), two negative
eigenvalues (the mirror image with respect to the φ2 axis of the shaded region in figure 1),
and one positive and one negative eigenvalue (the region above φ2 = 0 in figure 1).

Proof. See section A.5 of appendix A.

3 Eigenvalue specification of an AR(P )

This section outlines how the eigenvalue representation underlying the AR(2) may be
generalized to an AR with P lags, i.e. an AR(P ). Section 3.1 begins with a standard
representation of an AR(P ) as the product of P eigenvalue factors, which results in a
P -order lag polynomial. Section 3.2 outlines the mechanics of using vector convolution
to generate the lag polynomial coeffi cients, and hence the AR(P ) coeffi cients, from the
eigenvalue factors.
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3.1 AR(P ) from P eigenvalues

Generalizing the AR(2) representation in equation 5, an AR(P ) may be represented by
P eigenvalues as follows: [

P∏
k=1

(1− λkL)

]
yt = εt (10)

where k = 1, . . . , P are the index numbers for the eigenvalues λ = [λ1, . . . λP ], and
(1− λkL) are lag polynomial eigenvalue factors, which I will hereafter refer to simply
as eigenvalue factors. Analogous to equation 4, expanding the factored lag polynomial in
equation 10 will produce a lag polynomial of order P , i.e.:[

1−
P∑
p=1

φpL
p

]
yt = εt (11)

where φp is the coeffi cient associated with the lag exponent L
p.2 Applying the operators

Lp to yt thereby produces an OLS regression form analogous to equation 3. The following
summarizes the various ways that the OLS regression form for the AR(P ) will be expressed
in this article, i.e.:

yt = φ1yt−1 + . . .+ φPyt−P + εt

=

[
P∑
p=1

φpyt−p

]
+ εt

= [φ1, . . . , φP ]

 yt−1
...

yt−P

+ εt

= φYt−1 + εt (12)

where the last form uses the compact notation φ = [φ1, . . . , φP ] and Yt−1 = [yt−1, . . . , yt−P ]′.

3.2 AR(P ) coeffi cients from vector convolution

Expanding the product of eigenvalue factors in equation 10 may be done via the vector
convolution algorithm, which is routine for multiplying any two algebraic polynomials.
That is, represent the respective polynomial coeffi cients as the m- and n-element vectors
u and v, and then obtain the coeffi cients for the resulting polynomial as an (m+ n− 1)-
vector w, where each element k of w is the result of the following summation:3

w (k) =

min(k,m)∑
j=max(1,k+1−n)

u (j) v (k − j + 1) (13)

The AR(2) from section 2.2 provides a convenient illustration. First, directly expand-
ing the factored form of the lag polynomial in equation 5, i.e. (1− λ1L) (1− λ2L), gives

2Hamilton (1994) pp. 33-34 contains equivalent expressions for equations 10 and 11, but in the reverse
context, i.e. finding the eigenvalues for the lag polynomial (or its companion form).

3The convolution function is “conv(u, v)”in MatLab, or otherwise the algorithm is straightforward to
code as a double summation.
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the result 1 − (λ1 + λ2)L + λ1λ2L
2. For the convolution, (1− λ1L) and (1− λ2L) are

respectively represented as the two-element vectors u = [1,−λ1] and v = [1,−λ2], so
m = n = 2. The convolution of u and v then produces the three-element vector w2

representing the coeffi cients for the AR(2) lag polynomial, i.e.:4

w2 = conv ([1,−λ1] , [1,−λ2])

= [1,− (λ1 + λ2) , λ1λ2] (14)

which, as already obtained from the direct expansion, are the coeffi cients associated with
L0 (i.e. 1), L1, and L2. The two AR(2) coeffi cients from the convolution are therefore
φ1 = λ1 + λ2, and φ2 = −λ1λ2, as in equation 7 from section 2.2.
The results for a higher-order AR, like for the EAR estimations outlined in section

4.2, may be obtained by continuing to iterate the convolution result with the next two-
element vector, e.g. w3 = conv(w2, [1,−λ3]), and so on over all [1,−λk] vectors. The
resulting vector wP will contain 1 + P elements, with the first element being 1. Negating
the remaining P elements obtains the coeffi cients φ = [φ1, . . . , φP ] for equation 12.
Anticipating the discussion in section 4.3.4, the coeffi cients for an AR(P ) may also be

obtained by multiplying two lag polynomials of order 1 +K and 1 +P −K, respectively.
Representing the two lag polynomials as the vectors u = [1,−δ1, . . . ,−δK ] and v =
[1,−θ1, . . . ,−θP−K ], the convolution wP = conv(u, v) will again be a vector with 1 + P
elements that contains the AR(P ) coeffi cients φ = [φ1, . . . , φP ].

4 OAR and EAR estimation

In this section, I outline how the parameters for a specified AR may be estimated from a
time series of data. Section 4.1 introduces the conditional log-likelihood function that ap-
plies for the OAR and EAR, and section 4.2 discusses the conditional maximum likelihood
estimation (CMLE) of the parameters for the OAR. In section 4.3, I present methods for
CMLE of the EAR, and section 4.4 outlines how eigenvalue constraints may be incorpo-
rated into a time-varying EAR.

4.1 The conditional log-likelihood function

The log-likelihood function, conditioned on the initial P observations of the 1× (P + T )
dataset y = {y}T1−P , for the EAR in equation 10 and the OAR in equation 12 is:5

log (L [Θ,Ωε]) = −T
2

log (2π)− T

2
log (Ωε)−

1

2Ωε

T∑
t=1

ε2
t (15)

where the relevant parameter sets Θ that define εt = εt (Θ) and hence log (L [Θ,Ωε])
are outlined in sections 4.2 and 4.3. The conditional log-likelihood function implicitly
assumes that εt is iid normal, otherwise the subsequent estimation is quasi-CMLE. Also

4For the AR(2) example in the text, the three summations to obtain the elements for w2 are: w2 (1) =∑1
j=1 u (j) v (2− j) = 1 · 1 = 1, w2 (2) =

∑2
j=1 u (j) v (3− j) = 1 · −λ2 + −λ1 · 1 = − (λ1 + λ2), and

w2 (3) =
∑2
j=2 u (j) v (4− j) = −λ1 · −λ2 = λ1λ2.

5See, for example, Hamilton (1994) pp. 125-26.
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note that I undertake the CMLE on mean-adjusted data; if a constant α or mean µ were
included in the specification, either would be added as an unconstrained parameter to be
estimated at the same time as the parameter set [Θ,Ωε].6

4.2 OAR estimation

For the OAR, εt in equation 12 is a linear function of the AR coeffi cients φ =
[
φ1, . . . φp

]
,

and εt (φ) is defined from yt = φYt−1 + εt as in equation 12. Therefore, the CMLE of
φ may be obtained by analytically maximizing the log-likelihood function, which obtains
the following results:

φ = yY ′−1

(
Y−1Y

′
−1

)−1
(16a)

Ωε =
1

T
εε′ (16b)

where y is a 1×T vector containing all yt (from 1 to T ), Y−1 is a P ×T matrix containing
all Yt−1, and ε is a 1× T vector containing all εt. Equation 16a is the typical coeffi cient
vector of an AR obtained by an OLS regression, and equation 16b is the CMLE estimate
of the variance (i.e. without the degrees of freedom adjustment for OLS estimation);
e.g. see Hamilton (1994) pp. 125-26 or 295-96, and I have also included an exposition in
section B.1 of appendix B.

4.3 EAR estimation

Regarding the EAR, even before any constraints on the eigenvalues are included, εt is a
non-linear function of the eigenvalues λ = [λ1, . . . λP ]. More specifically, originating from
the product in equation 10, the coeffi cient vector φ = [φ1, . . . , φP ] is a non-linear function
of the eigenvalues λ = [λ1, . . . λP ], so:

yt = φ (λ)Yt−1 + εt (17)

The CMLE of λ is therefore not attainable by analytically maximizing the log-likelihood
function, and some method of numerical optimization is required. Hence, the computa-
tional expense of estimating an AR via the EAR framework is only worthwhile when
eigenvalue constraints are desired and/or required.
The following subsections outline three examples of estimating an EARwith eigenvalue

inequality and equality constraints that I subsequently use in the empirical illustrations
contained in section 6. The first example is the most straightforward case where the EAR
eigenvalues are constrained to be Positive and Real with a maximum magnitude of γ, and
so I hereafter refer to this example as the PREAR. The second example allows for Complex
and Real (positive or negative) eigenvalues while respecting the magnitude constraint of
γ, and so I refer to this more general case as the CREAR. Section 4.3.3 provides two
examples of equality constraints. In sub-section 4.3.4, I present an estimation approach
that combines the approaches from sections 4.3.1 to 4.3.3 with a supplementary OAR,
and I refer to this as the Hybrid-CREAR, or H-CREAR. Section 4.3.5 discusses the
computational effi ciency of various EAR methods.

6See Lütkepohl (2006) sections 3.3 and 3.4 for discussion on estimating the parameters of time series
models with mean-adjusted data.
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4.3.1 PREAR estimation

The constrained optimization for the PREAR CMLE may be represented as:

arg max
λ,Ωε

log (L [λ,Ωε]) subject to all 0 < λk < γ (18)

Using a scaled logistic function of unconstrained parameters xk to produce 0 < λk < γ,
i.e.:

λk =
γ

1 + exp (−xk)
(19)

allows the constrained PREAR optimization to be converted into an unconstrained opti-
mization, i.e.:

arg max
x,Ωε

log (L [x,Ωε]) (20)

where x = [x1 . . . , xP ], and the residuals εt in the log-likelihood function are now a non-
linear function of x, i.e.:

εt = yt − φ (λ [x])Yt−1 (21)

where φ (λ [x]) explicitly denotes the dependence from the parameters x to the eigenvalues
λ, and then to the AR coeffi cients, i.e. φ (λ [x]) = [φ1, . . . , φP ].
While any numerical method could be used for the optimization to obtain x and Ωε,

the squared residuals in the log-likelihood function make non-linear least squares (NLS)
highly applicable. Section B.2 in appendix B provides further details. Furthermore,
section B.3 shows that the simple functional forms used to define the PREAR readily
allows a concise analytic calculation of the Jacobian matrix ∂ [φ (x)]′ /∂x′ for the NLS
estimation. Otherwise a suitable Jacobian may be obtained using numerical derivatives,
as available in typical optimization functions (e.g. within the MatLab function “lsqnonlin”
that I use).
Regarding the starting values for x, I arbitrarily chose linear spacing between −2.197

and 2.944 for [x1, . . . , xP ] in the examples of section 6, where −2.197 and 2.944 are the
values that would produce 0.1 and 0.95 from equation 19. I use an arbitrary function
tolerance of 1e-10 as the convergence criterion.

4.3.2 CREAR estimation

The constrained optimization for the CREAR CMLE may be represented as:

arg max
λ,Ωε

log (L [λ,Ωε]) subject to all |λk| < γ (22)

Converting the constrained CREAR optimization to an unconstrained estimation is
more involved than for the PREAR, because the transformation needs to allow for each λk
to be either real or within a complex pair, but without knowing in advance which of those
two cases applies. The generalized AR(2) triangle derived in section 2 offers a convenient
geometric method for delivering pairs of AR(2) coeffi cients

(
φ∗k, φ

∗
k+1

)
,7 which in turn

7The notation
(
φ∗k, φ

∗
k+1

)
avoids any confusion with the CREAR coeffi cients themselves, i.e.

(
φk, φk+1

)
from φ (λ [x]) = [φ1, . . . , φP ]. The latter are ultimately calculated from the full set of eigenvalue pairs
(λk, λk+1), with each pair having been obtained using the generalized AR(2) triangle method. Note also
that Morley (1999) provides an algebraic method for constraining AR(2) to be within the unit circle,
which could also be generalized to allow for maximum eigenvalue magnitudes of γ.
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produce eigenvalues that can be positive, negative, or complex conjugate pairs, while also
ensuring that |λk| < γ. Hence, I use the following shifted scaled logistic function of the
unconstrained parameter xk:

φ∗k = 2γ

(
2

1 + exp (−xk)
− 1

)
(23)

to first obtain a value for φ∗k such that −2γ < φk < 2γ (which is the range of allowable
values for the base of the generalized AR(2) triangle). Given φ∗k, to ensure that

(
φ∗k, φ

∗
k+1

)
falls within the generalized AR(2) triangle, the upper constraint for φk+1 (which I denote
φ
∗
k+1) needs to be:

φ
∗
k+1 = γ (1− |φ∗k|) (24)

and the lower constraint for φ∗k+1 is −γ2. Therefore, given an unconstrained parameter
xk+1, the following scaled shifted logistic function:

φ∗k+1 =
φ
∗
k+1 + γ2

1 + exp (−xk+1)
− γ2 (25)

will ensure a value of φ∗k+1 so that
(
φ∗k, φ

∗
k+1

)
falls within the generalized AR(2) triangle.

Equation 6 is then used to obtain (λk, λk+1) from
(
φ∗k, φ

∗
k+1

)
.8

Note that if there is an odd number of lags (and hence eigenvalues) for the CREAR,
then the single remaining unpaired eigenvalue λP must be real, but it could be either
negative or positive, i.e. −γ < λP < γ. Such a result is readily obtained from an
unconstrained value xP within the following shifted scaled logistic function:

λP = γ

(
2

1 + exp (−xP )
− 1

)
(26)

Based on the discussion above, the constrained EAR optimization may be converted
into an unconstrained optimization analogous to the PREAR, i.e.:

arg max
x,Ωε

log (L [x,Ωε]) (27)

except the parameters x = [x1 . . . , xP ] are transformed differently to obtain the residuals
εt = yt − φ (x)Yt−1. Like for the PREAR, NLS estimation is again highly applicable, so
the details in section B.2 of appendix B also apply to the CREAR. Similarly, section B.4
in appendix B shows that the CREAR functional forms are still simple enough to produce
a relatively concise analytic calculation of the Jacobian matrix ∂ [φ (x)]′ /∂x′.
Arbitrary starting values can be used for x, but if a CREAR is being used to constrain

an existing OAR (e.g. to constrain an OAR eigenvalue that is found to be explosive),
then the eigenvalues from OAR estimates that are already available may be used to
obtain better starting values. The steps are as follows: (1) any OAR eigenvalues with
|λk| > γ should be set to have |λk| < γ (I use 0.99γ of the original λk); (2) convert the
(λk, λk+1) pairs to

(
φ∗k, φ

∗
k+1

)
pairs using equation 7; and convert the

(
φ∗k, φ

∗
k+1

)
pairs to

unconstrained (xk, xk+1) pairs using equations 23 to 25.

8The
(
φ∗k, φ

∗
k+1

)
pairs could also be used directly in the ultimate convolution to obtain [φ1, . . . , φP ].

This would use convolutions of the vector
[
1,−φ∗k,−φ∗k+1

]
, as in section B.4 of appendix B, rather than

the pairs of vectors [1,−λk] and [1,−λk+1].
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4.3.3 EAR estimation with equality constraints

The first example of EAR estimation with an equality constraint is setting the magnitude
of a complex conjugate pair of eigenvalues to unity, which imposes an oscillatory unit
root on the AR(P ), as in examples 6 and 16 of section 6. With reference to the stability
triangle in figure 2, this constraint may be imposed by setting φ∗2 = −1 and using a shifted
scaled logistic function to obtain −2 < φ∗1 < 2 or, equivalently, using the CREAR method
with γ = 1 and x2 = −∞.9
The second example of an equality constraint is a pair of repeated eigenvalues, e.g.

λ1 = λ2 (which are necessarily real) as in examples 7, 10, 17, and 20 of section 6. A pair
of repeated eigenvalues is readily incorporated into any EAR as a multiple of identical
factors, e.g. (1− λ1L) (1− λ1L) in the case of λ1 = λ2, and a magnitude constraint of
γ may be also be imposed, i.e. using equation 19 with an unconstrained parameter xk.
In general, an EAR could be specified to repeat one eigenvalue more than twice and/or
include more than one group of repeated eigenvalues. However, the presence of any
repeated eigenvalues has implications for the forecast/IRF and historical decompositions
outlined in section 5, as I will discuss in section 5.6.

4.3.4 H-CREAR estimation

In practice, only a subset of one or several eigenvalues in a CREAR estimation may
need to be set to an equality constraint/s or be bound by an inequality constraint. In
the former case, as formalized in Proposition 3 below, K eigenvalue equality constraints
may be incorporated into the data itself, which is then used to estimate a supplementary
OAR that implicitly contains the remaining unconstrained eigenvalues. Those eigenvalues
could be explicitly calculated from the supplementary OAR coeffi cients if desired, but the
AR(P ) can be obtained directly from the constrained eigenvalues and the supplementary
OAR coeffi cients. Note that, because the supplementary OAR provides no eigenvalue
constraints, the H-CREAR result will generally contain both complex and real eigenvalues.

Proposition 3 The coeffi cients of an AR(P ) subject to K eigenvalue equality constraints
may be estimated using a lag polynomial generated from K eigenvalues, i.e.:

K∏
k=1

(1− λkL) =

[
1−

K∑
p=1

δpL
p

]
(28)

and a supplementary OAR with P −K lags, i.e.:

zt =

P−K∑
p=1

θpzt−p + εt (29)

where zt is a variable obtained from the data yt and the generated coeffi cients δ = [δ1, . . . , δK ]
as follows:

zt = yt −
K∑
p=1

δpyt−p (30)

9A point on the edge of the stability triangle imposes a unit root, and the bottom edge is in the region
that produces complex conjugate eigenvalues and therefore oscillatory AR(2) dynamics. An alternative
would be to use the the polar form for the first two eigenvalues, i.e. (λ1, λ2) = r exp(±θi), impose r = 1,
and allow θ to be estimated within the range−π < θ < π using an unconstrained parameter within a
scaled logistic function.
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The AR coeffi cients φ = [φ1, . . . , φP ] may then be obtained from the convolution w =
conv(u, v) of the two vectors u = [1,−θ1, . . . ,−θP−K ] and v = [1,−δ1, . . . ,−δK ].

Proof. See section B.5 of appendix B.

A familiar example of an eigenvalue equality constraint, as mentioned in footnote 1
from the introduction, is imposing a single real unit root on an AR by estimating an
OAR applied to the time series of the first difference of yt. Specifically, setting λ1 = 1

and K = 1 within the H-CREAR gives
∏1

k=1
(1− λkL) = (1− L), and so δ1 = 1 and

zt = yt − yt−1 = ∆yt. The coeffi cients θ = [θ1, . . . , θP−1] would be those obtained by an
OAR applied to the time series of the first difference of yt, i.e. zt =

∑P−K
p=1 θpzt−p + εt

becomes ∆yt = θ1∆yt−1 + . . . + θP−1∆yt−P+1 + εt. A more general equality constraint

is obtained by specifying the product
∏K

k=1
(1− λkL), using convolution to obtain the

coeffi cients δ = [δ1, . . . , δK ], and then calculating zt = yt − δ1yt−1 − . . . − δKyt−K to use
in the supplementary OAR.
The case of an inequality constraint proceeds analogous to the equality case, except the

estimation algorithm at each iteration provides the subset of eigenvalues [λ1, . . . , λK ]. For
example, if the largest eigenvalue from an OAR is real and positive with a value λ1 > γ,
and all other eigenvalues have magnitudes |λk| � γ, then the constraint of |λk| < γ will
only bind for λ1. The algorithm for the H-CREAR estimation therefore estimates just the
eigenvalue λ1, or more precisely x1 that determines λ1 subject to the constraint γ, with
the supplementary OAR estimated by OLS within the log-likelihood function. A more
general inequality constraint would estimate [x1, . . . , xK ] that determines [λ1, . . . , λK ].

4.3.5 Computational effi ciency

The closed-form analytic optimization underlying an OAR estimation will always be com-
putationally less expensive than the numerical optimization underlying an EAR estima-
tion. The latter will therefore be redundant unless there are potential benefits from
imposing eigenvalue constraints for a given application. If only equality constraints are
desired/required for the AR(P ), then the H-CREAR allows the eigenvalues may be im-
posed while predominantly retaining the computationally effi cient OAR estimation (which
implicitly estimates the remainder of the eigenvalues without constraints). The H-CREAR
also allows inequality constraints to be imposed on just one or several eigenvalues while es-
timating the remainder with an OAR, which is more effi cient than imposing the inequality
constraints on all eigenvalues. The PREAR necessarily requires an eigenvalue inequality
constraint to apply on all eigenvalues, because the supplementary OAR estimation in the
H-CREAR will in general produce complex and real eigenvalues.

4.4 Time-varying EAR

The OAR and EAR specifications and estimation methods outlined in section 4 implicitly
assume that the AR(P ) coeffi cients and eigenvalues are time-invariant parameters. But
any of those specifications may be generalized to allow the coeffi cients and eigenvalues
to vary over time, which I will denote as the time-varying (TV) OAR or EAR, i.e. the
TVOAR or TVEAR. Allowing the parameters of an AR(P ) to vary over time may better
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represent changing relationships/properties in the data, analogous to time-varying vector
autoregressions in the multivariate case (e.g. Primiceri 2005).
The advantage of the TVEAR over the TVOAR is that the former allows direct con-

straints on the eigenvalues, which can be used to ensure that the time-varying AR(P ) will
always remain consistent with the allowable dynamics that may be required/desired. To
illustrate this point, I first specify a simple TVOAR and a closely related TVEAR, and
then discuss their differences in principle. I apply the TVOAR and TVEAR empirically
in section 6.3.
The TVOAR in state space form is:

φt = φt−1 + ηt ; ηt ∼ N (0, κIP ) (31a)

yt = φtYt−1 + εt ; εt ∼ N (0,Ωε) (31b)

where yt, Yt−1, εt, and Ωε are as previously defined in section 4.2, and the coeffi cient vector
φt is now a 1× P time-varying vector of state variables. This specification assumes that
the coeffi cients in φt follow independent random walks, i.e. the state equation transition
matrix is implicitly the P × P identity matrix IP , and ηt is a normally distributed 1× P
vector of innovations where κIP sets the variances to κ and the covariances to be zero.
The state equation is therefore defined with the single parameter κ, which governs the
diffusion rate of the random walks for each of the state variables.
The specification for the TVEAR is:

xt = xt−1 + ηt ; ηt ∼ N (0, κIP ) (32a)

yt = φ (λ [xt, γ])Yt−1 + εt ; εt ∼ N (0,Ωε) (32b)

where xt is a 1 × P vector of state variables which, in conjunction with the pre-defined
parameter γ, defines the 1×P time-varying vector of coeffi cients φ (λ [xt, γ]). Specifically,
analogous to time-invariant specifications in section 4.3, the P state variables from xt =
[x1,t, . . . , xP,t] define the set of P eigenvalues λt = [λ1,t, . . . , λP,t], via the CREAR method,
which in turn define the set of P coeffi cients φ (λ [xt]) =

[
φ1,t, . . . , φP,t

]
.

A setting of γ = 1 for the TVEAR imposes the constraint |λk,t| < 1 on the AR(P )
eigenvalues within the TVEAR at all points in time. This setting ensures that the AR(P )
will always be stationary/non-explosive, and so ensures aspects such as non-explosive
forecasts/IRFs and the statistical validity of variance decompositions, etc. Conversely,
there is nothing preventing the AR(P ) coeffi cients of a TVOAR evolving to values that
would result in explosive dynamics.
The TVOAR measurement equation is linear with respect to the state equation, and

so the standard linear Kalman filter may be used for its estimation. The TVEAR mea-
surement equation has a non-linear dependence on xt, and so a non-linear Kalman filter is
required for its estimation. I use the extended Kalman filter which, given the linear state
equation, simply requires the measurement equation to be linearized using the Jacobian
of φ (xt)Yt−1 with respect to xt, evaluated at the prior estimate of xt.10 Given that Yt−1

has no dependence on xt, the Jacobian of φ (λ [xt])Yt−1 is best expressed as the P × P
Jacobian of φ (λ [xt]) with respect to xt, i.e. ∂

∂x′t
[φ (xt)]

′, multiplied into Yt−1. As already
outlined in sections 4.3.1 and 4.3.2 for NLS estimations of the PREAR and CREAR, it
is feasible to calculate ∂

∂x′t
[φ (xt)]

′ analytically.

10Two alternatives are the iterated extended Kalman filter, which also requires the measurement equa-
tion to be linearized, or the unscented Kalman filter.
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5 AR(P ) forecasts/IRFs and components

All of the methods discussed in section 4 directly or indirectly produce estimates of φ and
Ωε, and so forecasts/IRFs from an AR(P ) may be obtained recursively in the usual way.
That is, for point forecasts or IRFs, the prevailing data and its relevant lagged values
yt, . . . , yt−P+1 or a given innovation vector is used in conjunction with φ to obtain yt+1,
then yt+1, . . . , yt−p+1 obtains yt+2, etc. The associated variances for forecasts/IRFs may
also be obtained recursively; e.g. see Lütkepohl (2006) pp. 36-38.11

However, as I show in this section, the eigensystem decomposition of the companion
form of the AR(P ) allows convenient closed-form expressions for forecasts/IRFs and their
associated variances to be obtained as a direct function of the horizon h. These closed-form
expressions in turn show how AR(P ) data and forecasts/IRFs may be viewed as AR(1)
and AR(2) components, which provides a useful perspective for assessing the dynamics
of the AR(P ).
To establish the overview above, I first introduce the companion form of the AR(P ) and

its associated eigensystem in section 5.1. Section 5.2 uses the companion-form expressions
to derive a closed-form expression for AR(P ) point forecasts/IRFs, which are the sum of
AR(1) and AR(2) processes, and section 5.3 shows how the history of the time series,
i.e. the data used to estimate the AR(P ), may also be decomposed into those AR(1) and
AR(2) components. Section 5.4 uses the AR(P ) companion form expressions to derive a
closed-form expressions for forecast/IRF confidence intervals, which is extended to closed-
form expressions for the ergodic variances of the AR(P ) and its components. Section 5.5
discusses how particular innovation vectors may be used to generate IRFs that reflect
given subsets of components. The results in sections 5.1 to 5.5 are all on the basis that
the eigenvalues are distinct. Section 5.6 discusses the case of repeated eigenvalues and its
implications.

5.1 AR(P ) companion matrix form

The P × P companion matrix Φ associated with an AR(P ) is:12

Φ =


φ1 · · · φP−1 φP
1 04 0

. . .
...

05 1 0

 (33)

where 05 and 04 respectively denote zeros for upper- and lower-triangular elements of a
matrix (in this case the (P − 1)× (P − 1) submatrix in Φ). Using the companion matrix,
the companion form of the AR(P ) is:

Yt = ΦYt−1 + EY,t (34)

where Yt = [yt, . . . , yt−p+1]′, Yt−1 = [yt−1, . . . , yt−p]
′, and EY,t = [εt, 0, . . . , 0]′, which are all

P × 1 vectors. The variance of EY,t is ΩEY = diag([Ωε, 0 . . . , 0]).

11Unless otherwise specified in particular contexts, I generally use the terminology “forecasts/IRFs”
because the mechanics for generating forecasts and IRFs along with their confidence intervals is the same.
The only difference, as will be discussed in section 5.5, is that IRFs use a given innovation vector while
forecasts use the initial vector [yt, . . . , yt−P+1]

′.
12For example, see Hamilton (1994) pp. 7-8.
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The regression form of the AR(P ) may be recovered from the companion form using
the 1×P vector J defined as J= [1, 0, . . . , 0]. Hence, multiplying both sides of equation 34
by J recovers the regression form of the AR(P ) in the last line of equation 12. Similarly,
JΩEY J

′ = Ωε recovers the regression form variance Ωε (and ΩEY = J ′ΩεJ).
The matrix Φ may be expressed as its eigensystem decomposition, i.e.:

Φ = V ΛV −1 (35)

where V is the P × P eigenvector matrix containing the P eigenvectors (each of length
P ) in its columns,13 and Λ is the P × P eigenvalue matrix containing the eigenvalues on
its diagonal:

V =


λP−1

1 · · · λP−1
P

... · · · ...
λ1 · · · λP
1 · · · 1

 ; Λ =

 λ1 04
. . .

05 λP

 = diag ([λ1, . . . , λP ]) (36)

5.2 AR(P ) closed-form forecasts/IRFs and components

From Lütkepohl (2006) p. 36, forecasts associated with an AR(P ) may be expressed as:

Et [yt+h] = JΦhYt (37)

where Et [yt+h] is the expected value, as at time t, of yt+h with h the horizon in periods
from t.
As formalized in the following proposition and proof, expressing equation 37 in its

eigenvalue form provides the basis for expressing Et [yt+h] in closed-form as the sum of P
AR(1) components, each associated with one of the AR(P ) eigenvalues.

Proposition 4 If all eigenvalues are distinct, Et [yt+h] is a sum of P AR(1) forecasts/IRFs,
i.e.:

Et [yt+h] =
P∑
k=1

λhkXk,t (38)

with the eigenvalues [λ1, . . . , λP ] providing the AR(1) coeffi cients, and the P × 1 vector
Xt = ΛP−1V −1Yt providing the initial values for each AR(1).

Proof. Substituting Φ = V ΛV −1 from equation 35 into Et [yt+h] = JΦhYt and using the

13See Wilkinson (1965) p. 14, or Hamilton (1994) pp. 22-23. Note that V is a Vandermonde matrix, e.g.
see Horn and Johnson (1991) section 6.1. Vandermonde matrices are applied in areas such as polynomial
interpolation, signal processing, and control theory, and in such contexts there exist fast and accurate
algorithms for inverting V . I have not used such approaches in the analysis underlying the present article,
because the lag lengths are relatively short and explicit inverses are not required to calculate the products
of vectors or matrices with an inverse matrix (i.e. Gaussian elimination may be used). However, explicit
inversions may be computationally more effi cient for longer lag lengths.
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form of the eigenvector and eigenvalue matrices in equation 36 gives the result:

Et [yt+h] = J
(
V ΛV −1

)h
Yt

= JV ΛhV −1Yt

=
[
λP−1

1 , . . . , λP−1
P

]
Λh−P+1

(
ΛP−1V −1Yt

)
=

[
λP−1

1 , . . . , λP−1
P

]
Λh−P+1Xt

=
[
λh1 , . . . , λ

h
P

]
Xt

= [1, . . . , 1] ΛhXt (39)

where
[
λh1 , . . . , λ

h
P

]
is a 1 × P vector, and Xt = ΛP−1V −1Yt = [X1,t, . . . , XP,t]

′ is a P × 1

vector. Evaluating the inner product
[
λh1 , . . . , λ

h
P

]
Xt or the equivalent [1, . . . , 1] ΛhXt

gives the summation form in equation 38.

Unless the eigenvalues have been constrained to be real, Λ will generally include real
eigenvalues and pairs of complex conjugate eigenvalues. In the case of a real eigenvalue
λk, its associated component λ

h
kXk,t will be a real AR(1) process. Complex eigenvalues

could be accommodated individually as complex AR(1) models, e.g. see Sekita, Kurita,
and Otsu (1992), but it is more convenient to remain in the real domain by combining
the contribution of complex conjugate components λhkXk,t and λ

h
k+1Xk+1,t to Et [yt+h] into

a real AR(2), as in the following proposition.

Proposition 5 A pair of components λhkXk,t + λhk+1Xk+1,t associated with the complex
conjugate eigenvalues (λk, λk+1) will contribute the following AR(2) forecast/IRF compo-
nent to Et [yt+h]:

λhkXk,t + λhk+1Xk+1,t =
[

1 0
] [ φ∗k φ∗k+1

1 0

]h [
X∗k,t
X∗k,t−1

]
(40)

where
[
X∗k,t, X

∗
k,t−1

]′
= [2 Re (λkXk,t) , 2 Re (Xk,t)], and the pair of AR(2) coeffi cients is(

φ∗k, φ
∗
k+1

)
= (λk + λk+1,−λkλk+1). The latter may also be expressed as

(
φ∗k, φ

∗
k+1

)
=(

2Re (λk) ,− |λk|2
)
.

Proof. See sections C.1 and C.2 of appendix C.

Like for the AR(2) in its own right (see section A.3 of appendix A), using the polar form
for a complex conjugate pair of eigenvalues, i.e. (λk, λk+1) = [r exp (iθk) , r exp (−iθk)]
where θ = cos−1 (real [λk] / |λk|), results in expressions for the AR(2) components based
on trigonometric functions, i.e. r sin (hθk) and r cos (hθk). Section C.3 in appendix C
contains further details, and the trigonometric perspective clearly shows the oscillatory
nature of the contributions to forecasts/IRFs from AR(2) components.
In summary then, the forecasts/IRFs for an AR(P ) with distinct eigenvalues may be

expressed as a sum of real AR(1) and AR(2) processes, with each AR(1) associated with
one of the real eigenvalues and each AR(2) associated with one of the pairs of complex
conjugate eigenvalues, i.e.:

Et [yt+h] =

real λk∑
k

λhkXk,t +

complex λj∑
j

[
1 0

] [ φ∗k φ∗k+1

1 0

]h [
X∗k,t
X∗k,t−1

]
(41)
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where “real λk” denotes the set of real eigenvalues, and “complex λj” denotes sets of
complex conjugate pairs of eigenvalues, i.e. each component j represents the combined
contribution of the eigenvalue pair (λk, λk+1) =

(
λk, λk

)
.

5.3 Historical component decomposition

The framework for decomposing Et [yt+h] into components may also be applied to the
historical time series yt, i.e. the data used to estimate the AR(P ), by simply setting the
horizon to h = 0, given that yt = Et [yt+0]. Using the real AR(1) and AR(2) processes in
equation 41, the summation is:14

yt =

real λk∑
k

Xk,t +

complex λj∑
j

[
1 0

] [ X∗k,t
X∗k,t−1

]

=

real λk∑
k

Xk,t +

complex λj∑
j

X∗k,t (42)

The historical components may be interpreted in two senses. First, if an AR(P )
forecast from time t was made, then Xk,t or X∗k,t would be the starting value for the
AR(1) or AR(2) component of the AR(P ) forecast.15 Second, as shown in the following
two propositions, each time series Xk,t or X∗k,t is effectively “decomposed data”, i.e. a
time series that if used for estimation in its own right would produce the component
AR(1) or AR(2) model. Specifically, Proposition 6 establishes that an AR(1) estimation
using the time series Xk,t would result in the eigenvalue λk as the coeffi cient, although
the AR(1) could be real or complex depending on λk. Proposition 7 establishes that X∗k,t
would result in the coeffi cient pair

(
φ∗k, φ

∗
k+1

)
for the real AR(2) that is associated with a

complex conjugate pair of eigenvalues (λk, λk+1).

Proposition 6 An AR(1) model estimated with the decomposed data series Xk,t will give
the eigenvalue λk as the AR(1) coeffi cient.

Proof. Beginning with the companion form for the AR(P ) and using the eigensystem
decomposition for Φ, i.e. Φ = V ΛV −1, gives the following result:

Yt = ΦYt−1 + EY,t

Yt = V ΛV −1Yt−1 + EY,t

V −1Yt = ΛV −1Yt−1 + V −1EY,t

ΛP−1V −1Yt = ΛΛP−1V −1Yt−1 + ΛP−1V −1EY,t

Xt = ΛXt−1 + EX,t (43)

14The data yt could also be decomposed into the real and complex AR(1) components from equation
38, in which case the summation is yt = [1, . . . , 1]Xt =

∑P
k=1Xk,t, and the right-hand side is real due to

the cancellation of the imaginary parts of the complex conjugate components.
15The forecasts will obviously be in-sample, because the eigenvalues used to obtain Xk,t or X∗k,t are

estimated from the full sample, directly via the EAR or indirectly via the OAR coeffi cients.
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where the fourth line uses the result that ΛΛP−1 = ΛP−1Λ, because Λ is diagonal, and
EX,t = ΛP−1V −1EY,t. Equation 43 in full matrix form is: X1,t

...
XP,t

 =

 λ1X1,t−1 04
. . .

05 λPXP,t−1

+

 EX,1,t
...

EX,P,t

 (44)

and each line is an AR(1) in regression form, i.e.:

Xk,t = λkXk,t−1 + EX,k,t (45)

Proposition 7 Estimating an AR(2) model with the decomposed data series X∗k,t will
return AR(2) coeffi cients associated with the complex conjugate eigenvalue pair (λk, λk+1).

Proof. See section C.4 of appendix C.

5.4 Closed-form forecasts/IRFs and variances

Confidence intervals around the point forecasts and IRFs for a given horizon may be
obtained from the forecast error variance (FEV) associated with that horizon. Following
Lütkepohl (2006) p.38, eq. 2.2.11, the FEV for horizon H is obtained by summing the
contributions from the moving-average representation, i.e.:16

Ωy (H) =
H−1∑
h=0

JΦhΩEY

(
Φh
)′
J ′ (46)

where H now represents the forecast horizon, given that I have retained h to denote the
horizon for each period up to H within the FEV expression.
As noted in Lütkepohl (2006), the summation is usually done recursively, i.e. setting

Ωy (1) = JΩEY J
′ = Ωε as obtained with H = 1 in equation 46, and using the following

recursive relationship for subsequent horizons:

Ωy (H) = Ωy (H) + JΦH−1ΩEY

(
ΦH−1

)′
J ′ (47)

The eigensystem representation for an AR(P ) provides a basis for deriving a closed-
form expression for the finite sum in equation 46, as outlined in Proposition 8 below.
The proof is provided in section D.2 of appendix D, but the intuition is that using
Φ = V ΛV −1 allows each term of the FEV summation in equation 46 to be expressed
as JΦhJ ′ΩεJ

(
Φh
)′
J ′ = JV ΛhV −1J ′ΩεJ

(
V ΛhV −1

)†
J ′, and then the sum of each ele-

ment in the matrix ΛhV −1J ′ΩεJ (V −1)
†
Λh may be expressed as a closed-form geometric

summation of a scalar. Note that the Hermitian transpose “†”, i.e. Ui,j = Uj,i, allows for
complex conjugate elements.

16Some alignment of my notation with Lütkepohl (2006) is necessary to show the equivalance of my
expression in equation 46 and equation 2.2.11 in Lütkepohl (2006); see section D.1 of appendix D for
details. Section D.1 also details how equation 46 is derived, which parallels the exposition in Lütkepohl
(2006) section 2.2.2.
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Proposition 8 The FEV, Ωy (H), for a given horizon H may be obtained directly by
calculating each of the (i, j) elements of ΩX (H) as:

[ΩX (H)]ij = ΩEX ,ij

1−
(
λiλj

)H
1− λiλj

(48)

where ΩEX = V −1
X ΩEY

(
V −1
X

)†
is the P ×P covariance matrix for EX,t, with VX = V Λ1−P ,

and then using the resulting ΩX (H) in the expression:

Ωy (H) = JVXΩX (H)V †XJ
′ (49)

Proof. See section D.2 of appendix D.

I am not aware of this or any other closed-form expression for AR(P ) FEVs in the liter-
ature. This may be because FEVs are typically calculated for every horizon out to longest
horizon of interest (e.g. to produce figures of forecasts/IRFs with confidence intervals),
in which case the recursive expression is convenient and computationally effi cient. But if
FEVs are only required for one or several horizons, then the closed-form expression offers
a computationally effi cient means of doing so, given the FEV for a particular horizon/s
may be calculated without the FEVs for intervening horizons.
The closed-form FEV expressed in terms of the AR(P ) eigenvalues in Proposition 8

may also be used to obtain a closed-form expression for the ergodic variance of the AR(P ),
simply by taking the limit as H →∞.

Proposition 9 The ergodic variance Ωy (∞) for an AR(P ) may be obtained by calculating
each (i, j) element of ΩX (∞) as:

[ΩX (∞)]ij = ΩEX ,ij
1

1− λiλj
(50)

and then using the resulting ΩX (∞) in the expression:

Ωy (∞) = JVXΩX (∞) (VX)† J ′ (51)

Proof. Using equation 49 and taking the limit as H →∞.gives:

Ωy (∞) = lim
H→∞

(
JVXΩX (H)V †XJ

′
)

= JVXΩX (∞)V †XJ
′

and then the elements of ΩX (∞) are calculated by taking the limit as H →∞ of equation
48:

ΩX (∞) = lim
H→∞

(
ΩEX ,ij

1−
(
λiλj

)H
1− λiλj

)
= ΩEX ,ij

1

1− λiλj
(52)
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Again, I am not aware of this particular result in the literature, but it is within
the class of other computationally effi cient methods for obtaining the ergodic variance
or, equivalently, solving the discrete Lyanpunov equation. Section D.3 of appendix D
contains further discussion related to Proposition 9 and its context in the literature.
The ergodic variance result above also suggests a means of assessing the importance

of each of the AR(1) or AR(2) components to the dynamics of the AR(P ). The following
proposition provides the basis for such an assessment.

Proposition 10 The ergodic variances for each of the AR(1) components in Proposition
4 are:

ΩEX,kk (∞) =
ΩEX,kk

1− λkλk
=

ΩEX,kk

1− |λk|2
(53)

which are also the diagonal elements of ΩX (∞).

Proof. The regression form of the AR(1) component k for an AR(P ) is Xk,t = λkXk,t−1 +
EX,k,t, which arises from each line of Xt = ΛXt−1 + EX,t, where Xt = ΛP−1V −1Yt and
EX,t = ΛP−1V −1EY,t. Defining the variance for EX,k,t directly as:

ΩEX,k = E
(
EX,k,tE

†
X,k,t

)
(54)

then, from equation 52, the AR(1) component will have the following ergodic variance:

ΩEX,k (∞) = ΩEX,k

1

1− λkλk
=

ΩEX,k

1− |λk|2
(55)

Also from equation 52, the (k, k) element of ΩX (∞) is:

[ΩX (∞)]kk = ΩEX ,kk
1

1− λkλk
(56)

which shows that ΩEX,k (∞) = [ΩX (∞)]kk.

Note that ΩEX,kk (∞) is necessarily real, because ΩEX,k and 1−|λk|2 are real. Therefore,
Proposition 10 applies to AR(1) and AR(2) components, or specifically to both real AR(1)
components and each complex AR(1) component within a pair of complex conjugate
components that form an AR(2). Based on Proposition 10, the ergodic variances for
each of the AR(1) and AR(2) components in section 10 may be used to show their direct
contribution to the ergodic variance of the AR(P ), which provides a quantitative measure
of their dynamic importance. I illustrate such a comparison in the empirical applications
within section 6.

5.5 AR(P ) closed-form IRFs and IRF components

An IRF for an AR(P ) is simply a forecast associated with a given innovation vector. I will
denote the innovation vector as Y0,t, and its associated IRF as Et [yt+h|Y0,t]. The innovation
vector Y0,t may be transformed into the component form, i.e. X0,t = ΛP−1V −1Y0,t, in
which case the IRF may also be represented in component form, i.e. Et [Xt+h|X0,t] =
ΛP−1V −1Et [Yt+h|Y0,t].
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An IRF is typically calculated for a contemporaneous innovation, which corresponds
to a non-zero value in just the first element of Y0,t, e.g. Y0,t = [1, 0, . . . , 0]′ for a unit
innovation. In this case, the vector X0,t = ΛP−1V −1 [1, 0, . . . , 0]′ will generally have P
non-zero elements, and so the closed-form IRF will be a sum over P non-zero functions
λhkX0,k,t as follows:

Et [yt+h|Y0,t] =

P∑
k=1

λhkX0,k,t (57)

If non-contemporaneous values in Y0,t are also allowed to be non-zero, which would be
in the context to be discussed further below, then it is possible to deliver IRFs that have
just the dynamics associated with particular eigenvalue components. For example, an IRF
that is only a function of the first eigenvalue component, i.e. Et [yt+h|Y0,t] = λh1X1,t, would
be delivered with the vector X0,t = ΛP−1 [1, 0, . . . , 0]′, which in turn would be obtained
with an innovation Y0,t set equal to the first eigenvector, i.e.:

X0,t = ΛP−1 [1, 0, . . . , 0]′

ΛP−1V −1Y0,t = ΛP−1 [1, 0, . . . , 0]′

Y0,t = V [1, 0, . . . , 0]′

= V1 (58)

Similarly, using the innovation Y0,t = Vk will result in X0,t = ΛP−1ek (where ek is a P × 1
vector with an entry of 1 in element k and entries of zero otherwise), and therefore the
IRF Et [yt+h|Y0,t] = λhkXk,t. An innovation Y0,t = [Vk + Vk+1] = 2 Re (Vk) where Vk and
Vk+1 are associated with a complex conjugate eigenvalue pair (λk, λk+1) will result in
X0,t = ΛP−1 (ek + ek+1). The IRF is therefore Et [yt+h|Y0,t] = λhkXk,t + λhk+1Xk+1,t which,
from Proposition 5, is an IRF for just the AR(2) component of the AR(P ) associated
with (λk, λk+1) or equivalently

(
φ∗k, φ

∗
k+1

)
. More generally, an innovation Y0,t = V X0,t

calculated from X0,t with selected non-zero elements will result in Y0,t being a linear
combination of the selected eigenvectors, so Y0,t will in turn produce an IRF Et [yt+h|Y0,t]
that is a linear combination of the eigenvalue components associated with the non-zero
elements in X0,t.
Of course, the example of Y0,t = Vk and its variants in the previous paragraph are

no longer contemporaneous innovations. That is, the eigenvector associated with a given
eigenvalue λk is Vk =

[
λP−1
k , λP−2

k , . . . , λk, 1
]′
, and so Y0,t =

[
λP−1
k , λP−2

k , . . . , λk, 1
]′
would

contain the contemporaneous value y0,t = λP−1
k , and the respective values of y0,t−1 =

λP−2
k , y0,t−2 = λP−3

k , . . ., y0,t−P+2 = λk, and y0,t−P+1 = 1. The context in which an
innovation vector would deliver an IRF associated with a single eigenvalue component
is therefore a specification with a contemporaneous value of 1 at time t, and an ex-ante
sequence of future innovations, i.e. λk at time t + 1, λ2

k at time t + 2, etc. until λP−1
k at

time t + P − 1. To distinguish this from Y0,t, I denote this ex-ante innovation vector as
YP,t =

[
λP−1
k , λP−2

k , . . . , λk, 1
]′
, and the associated IRF as Et [yt+h|YP,t]. More generally,

analogous to the discussion at the end of the previous paragraph, YP,t suitably defined
with a linear combination of eigenvectors, via YP,t = V XP,t with XP,t containing selected
non-zero elements, would produce an IRF Et [yt+h|YP,t] that is a linear combination of the
eigenvalue components associated with the non-zero elements in XP,t.
While perhaps unusual in a pure time series context, an ex-ante innovation spec-

ification like YP,t already has a precedent in Dynamic Stochastic General Equilibrium
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modelling, e.g. Carrillo, Feve, and Matheron (2011) uses an ex-ante innovation specifi-
cation to allow for more persistent shocks to monetary policy. That example also helps
to clarify the meaning of an ex-ante innovation introduced above, i.e. YP,t should not
be viewed as a series of unanticipated shocks, but rather a single shock that contains a
contemporaneous intervention along with a series of pre-announced future interventions.

5.6 Repeated eigenvalues

The assumption of distinct eigenvalues in sections 5.1 to 5.5 covers the results of all em-
pirical OAR estimations and also estimations of EARs that are specified with distinct
eigenvalues. Specifically, it would be rare to obtain even approximately equal eigenval-
ues from such estimations and, in any case, machine precision underlying the numerical
processes for estimation will ensure that eigenvalues are not repeated.
But repeated eigenvalues may be imposed on an AR(P ) estimation using the EAR

framework, such as the single pair of repeated eigenvalues mentioned in section 4.3.3.
In general, an EAR could be specified to include more than two repeats of a single
eigenvalue, or several groups of repeated eigenvalues. Section E.1 of appendix E provides
an overview of how these general cases may be accommodated, essentially by incorporating
the appropriate Jordan block/s in the eigenvalue matrix Λ and making the associated
adjustments to the corresponding eigenvectors in V .
Repeated eigenvalues therefore produce components in the closed-form forecast/IRF

expressions with functional forms outside of those already presented for the AR(1) and
AR(2) processes. For example, as detailed in Section E.2 of appendix E, the EAR specifi-
cations with a single pair of repeated eigenvalues, i.e. λ1 = λ2 (so both must be real), that
I apply in section 6 will contribute to Et [yt+h] the following forecast/IRF component:

λh1X1,t + (h+ P − 1)λh−1
1 X2,t (59)

where X1,t =
[
ΛP−1V −1Yt

]
1
and X2,t =

[
ΛP−1V −1Yt

]
2
are respectively elements 1 and 2

of the P × 1 vector Xt = ΛP−1V −1Yt. The historical decompositions, FEVs, and ergodic
variances also have adjustments associated with the repeated eigenvalue pair.
The rest of Λ and V remain in the form already discussed for distinct eigenvalues

in section 5.1, and so the associated components in the forecast/IRF expressions, etc.,
remain as presented in sections 5.2 to 5.5.

6 Empirical applications

In this section, I apply the EAR framework to mean-adjusted quarterly United States
3-month Treasury bill (US Tbill) rate data. In section 6.1, I estimate and provide results
for two OARs and then a set of EARs subject to the variety of eigenvalue constraints
mentioned in the introduction. Section 6.2 provides an example of historical and forecast
decompositions of an AR(P ) into eigenvalue components. Section 6.3 contains the results
of the TVEAR specified in section 4.4.
Before proceeding, it is important to make several aspects clear. First and foremost,

for the empirical examples in sections 6.1 and 6.2, I have used a selected sample pe-
riod and have estimated the models and forecast with them in particular ways to most
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clearly illustrate the dynamics associated with the eigenvalues within the EAR frame-
work. Specifically, the sample period I have chosen is from Jun-1947 to Mar-1981 (so
P +T = 136), I have imposed the lag lengths of P = 4 and 5 (which also ensures that the
differences within the two groups of models are due only to the eigenvalue constraints),
and I have used a forecast horizon of 20 years. These choices provide results that are visu-
ally apparent in the figures, both for the EAR estimations with eigenvalue constraints in
section 6.1, and the component decomposition example in section 6.2. The long horizons
for forecasts also allow the forecasts in the figures to serve as IRF illustrations. Specif-
ically, in figure 3 of section 6.1, the largest eigenvalue components for the given models
dominate the forecasts for longer horizons, so the latter are effectively the long-horizon
IRF Et [yt+h|YP,t] associated with the innovation vector YP,t = λP−1

1 V1 = λ3
1V1. Figure

4 in section 6.2 contains the forecast components associated with individual eigenvalue
components, which are IRFs Et [yt+h|YP,t] with innovation vectors YP,t = Xk,tV ek for a
real AR(1) eigenvector component or YP,t = Xk,tV (ek + ek+1) for a real AR(2) component
associated with a pair of complex conjungate eigenvalues.
My choices underlying these examples should obviously not be taken as an advocation

to model and forecast the US Tbill rate in any of the particular ways shown; indeed, the
log-likelihood ratios indicate that some models are clearly rejected by the data,17 and the
nature of some forecasts in the figures also show that they would be inappropriate when
forecasting interest rates. In practice, for this variable or any other, a researcher would
specify, estimate, and evaluate their own AR model according to their particular require-
ments, including pre-testing to select the appropriate lag length and using diagnostics
and judgement to ensure that the model was appropriate.

6.1 AR(P ) model estimations

Table 1 contains the results for estimating AR(P ) models with P = 4 and P = 5,
respectively, first via the OAR in models 1 and 11, and then via the EAR in models 2-10
and 12-20. Within each of the EAR estimations, models 2-7 and 12-17 are CREARs (i.e.
eigenvalues may be complex or real), and models 8-10 and 18-20 are PREARs (i.e. with
only real eigenvalues). I report results to four decimal places for the largest eigenvalues
in each model to clearly show the effect of constraints, as discussed further below. Figure
3 plots selected forecasts from the P = 4 suite of model estimates to illustrate how the
eigenvalue constraints in the estimated EAR models affect the model dynamics.
For P = 4, the OAR coeffi cients [φ1, . . . φ4] and their standard errors are obtained

from the estimation via OLS. The point estimates of the associated eigenvalues [λ1, . . . λ4]
are calculated from the eigensystem decomposition of the OAR companion matrix, and
the eigenvalue standard errors are discussed in the following paragraph. The largest
eigenvalue λ1 = 1.0103 indicates that the OAR(4) is explosive, which is also clearly evident
in the associated forecasts/IRFs in figure 3. The other eigenvalues for the OAR(4) have
magnitudes less than 1, with λ2 and λ3 a complex conjugate pair (|λ2| = 0.96), and λ4

real.

17The critical chi-squared values of 10% 2.71, 5% 3.84, 2.5%, 5.02, and 1% 6.63 provided in table 1 are
from the standard chi-squared distribution with one degree of freedom (to allow for a single constraint).
These values are should be treated as indicative only because they will not apply to the non-stationary
models (which will have non-standard distributions).
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The EAR models are all estimated via their eigenvalues, as outlined in section 4.3
using the various restrictions as given in table 1, and the coeffi cients are calculated via
convolution of the eigenvalue estimates, as in section 3. Model 2 shows that the CREAR
replicates the OARwhen the inequality constraint for the eigenvalue magnitude is set large
enough to not bind, i.e. |λk| < 2 in this example. Hence, I use model 2 as an example of
calculating the eigenvalue standard errors, via the Hessian, for the unconstrained EAR and
so the OAR in model 1.18 The 0.10±0.06i entry for (λ2, λ3) gives the respective standard
errors for the real and imaginary components. In polar form, (λ2, λ3) are r exp(±θi) =
0.68× exp(±1.79i), with respective standard errors for r and θ of 0.07 and 0.14.
The local-to-unity inequality constraint for model 3 mildly restricts the largest eigen-

value from an explosive to a mildly explosive value. Similarly, the unity inequality con-
straint for model 4 further restricts the largest eigenvalue to be non-explosive, and model
5 imposes a more material restriction so that the resulting model is obviously mean-
reverting. These respective properties are evident in the forecast/IRF plots of models 3
to 5 in figure 3. Table 1 shows that the magnitudes of the largest estimated eigenvalues
for models 3 to 5 essentially equal the respective constraints, i.e. γ = 1 + 1/T = 1.074,
1, and 0.95. Also included for the model 5 forecast results is the ± standard deviation
obtained from the closed-form FEV expression in setion 5.4.
A further point of note on models 3 to 5 is that, as the eigenvalue inequality constraint

is progressively tightened, the changes in the AR(4) coeffi cients are small and not pro-
portionally linear. This aspect highlights the point from the introduction that eigenvalue
constraints could not be achieved via an OAR with linear constraints on its coeffi cients.
Models 6 and 7 are examples of applying more arbitrary eigenvalue constraints on the

estimation. Hence, model 6 uses a complex conjugate eigenvalue pair with an eigenvalue
magnitude equality constraint of 1 to impose an oscillatory unit root. Figure 3 shows
the forecast/IRF result of non-decaying oscillations, with a wavelength of 3.31 quarters.19

Such a constraint would obviously not be used for forecasting interest rates, but it does
present a method for modelling seasonality. Model 7 constrains the first two estimated
eigenvalues to be equal, which illustrates an avenue for parameter reduction/model selec-
tion.20

The PREAR results in models 8 and 9 show that imposing the constraint of only real
eigenvalues causes the models to default to an AR(1), so φ1 = λ1 and the remaining eigen-
value estimates are essentially zero. While the model produced is minimal, the PREAR
nevertheless works as intended to avoid pronounced oscillatory dynamics, particularly in
the AR(5) example discussed below and in section 6.2. The constraint of repeated eigen-

18Specifically, I numerically calculate the Hessian matrix of the log-likelihood function with respect to
the eigenvalue and variance estimates, i.e. H = ∂ log(L[λ,Ω])

∂[λ,Ω]′∂[λ,Ω]
. The standard errors are then diag

(
−H−1

)
.

The [λ,Ω] standard errors for the remaining models are obtained in the same way but I have not reported
these in table 1 to save space. Also note that the Hessian and hence the standard errors can only
be calculated for the unconstrained subset of eigenvalues (and Ω). An eigenvalue subject to a binding
inequality constraint will have very large standard errors because the corresponding row and column in
the Hessian will be near zero, making the Hessian near-singular.
19The wavelength is obtained from the angle of the polar form for λ1, i.e. cos−1 [Re (λ1)] =

cos−1 [−0.3213] = 1.90 radians, hence giving the wavelength as 2π/1.90 = 3.31 (and a frequency of
4/3.3 = 1.21 cycles per year).
20Imposing a zero restriction via the EAR is trivial, because it simply defaults to reducing the AR(P )

to and AR(P − 1). But zero restrictions offer a promising avenue for parameter reduction in multivariate
applications.
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values in the PREAR leads to an AR(2), but the mean-reversion with the smaller values
of λ1 = λ2 = 0.58 is much faster than with the larger values of λ1 = λ2 = 0.80 in the
CREAR example of repeated eigenvalues.
For P = 5, the eigenvalues associated with the OAR estimate are all less than 1 in

magnitude. Hence, none of the inequality constraints for models 12 to 14 (which are as
for models 2 to 14, i.e. |λk| < 2, local-to-unity, and non-explosive) bind in these examples;
all have the same estimated eigenvalues and hence coeffi cients as the OAR.
In model 15, the constraint of |λk| < 0.90 results in a complex conjugate pair as the

largest eigenvalues (and their magnitude is essentially equal to the constraint). Model 16
again provides an example of an oscillating unit root, with a wavelength of 3.75 quarters.
The repeated eigenvalue example in model 17 produces a higher rate of mean reversion
than the OAR(5), and the remaining eigenvalues are very similar to the complex conjugate
pair (λ2, λ3) and λ4 in the OAR(5)/unconstrained EAR.
The PREAR results in models 18 and 19 again show that a constraint of real eigen-

values leads to AR(1) models, with essentially the same coeffi cient as the P = 4 results
in models 8 and 9. Similarly, the repeated eigenvalue constraint in model 20 essentially
replicates model 10.

Figure 3: Forecasts for the AR(4) models 1 to 7 from table 1. The shaded area is ±1 standard
deviation confidence interval around the forecast from model 5.

6.2 AR(P ) component decomposition

Figure 4 contains the decomposition of historical data and forecasts into the eigenvalue
components obtained from model 11, i.e. the OAR with P = 5 (which is also replicated
by the EAR estimations in models 12-14). The forecast function is:

Et [yt+h] = λh1X1,t +
[

1 0
] [ φ∗2 φ∗3

1 0

]h [
X∗2,t
X∗2,t−1

]
+ λh4X5,t + λh4X5,t (60)

where t is Mar-1981, component 1 is an AR(1) with λ1 = 0.98 and X1,t = 8.45, com-
ponent 2 is an AR(2) with (φ∗2, φ

∗
3) = (−0.21,−0.91) and

(
X∗2,t, X

∗
2,t−1

)
= (1.07, 3.88),21

21The eigenvalue pair underlying the AR(2) component coeffi cients is (λ2, λ3) = −0.10 ± 0.95i (as
shown for the OAR(5) model 11 in table 1), which has a magnitude of 0.95. (X2,t, X3,t) = 0.54± 1.92i,
which has a magnitude of 1.99.
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component 4 is an AR(1) with λ4 = −0.73 and X4,t = 0.27, and component 5 is an AR(1)
with λ5 = 0.71 and X5,t = −0.61. The historical components are the model-inferred time
series for X1,t, X∗2,t (and X

∗
2,t−1), X4,t, and X5,t over the time range of Jun—1948 to Mar-

1981. As discussed in section 5.3, these time series are the decomposed data underlying
the AR models used to produce each of the forecast components. Also included for the
AR(1) model for the λ1 forecast component is the ± standard deviation obtained from
the closed-form FEV expression in section 5.4.22

Figure 4: Decompositions of the historical data and the forecasts/IRFs for the AR(5). The
historical data yt and its components is from Jun-1947 to Mar-1981. The forecasts/IRFs
Et [yt+h] and components are from Jun-1981. The shaded area is ±1 standard deviation

around the forecast component 1.

Regarding forecast dynamics, the AR(1) component associated with λ1 unambiguously
makes the largest contribution. That is, as shown in table 1 underneath the OAR(5)
eigenvalue estimates, the λ1 component has the largest magnitudeX1,t and also the largest
magnitude eigenvalue. The AR(2) component associated with the eigenvalue pair (λ2, λ3)
makes the second-largest contribution, with a large pair of starting values

(
X∗2,t, X

∗
2,t 1

)
at

the end of the estimated sample period and the second-largest eigenvalue magnitude. Such
pronounced oscillations are implausible in a forecast of interest rates, so a forecaster would
likely use judgement to ignore these pronounced oscillations (which could be achieved by
setting X∗2,t and X∗2,t−1 to zero, or estimating a model with real eigenvalues).

23 The
AR(1) components associated with λ4 and λ5 respectively make the third- and fourth
largest forecast contributions.
Regarding overall dynamics, the ergodic variances in table 1 below the OAR(5) eigen-

value estimates show that the λ1 component dominates, with a value of 18.88. The ergodic

22Because the expression Xt = ΛP−1V −1Yt uses matrices ΛP−1 and V −1 with estimated parameters,
confidence intervals could be calculated for Xk,t or Xk,t and X∗k,t. However, the overall summation is not
subject to confidence intervals because it returns the observable variable yt. That is, using Et [yt+h] =
JV ΛhV −1Yt from the proof of Proposition 4, Et [yt+0] = JV Λ0V −1Yt = JV V −1Yt = JYt = yt.
23The AR(2) component in this example is heavily influenced by the large fluctuations of the US Tbill

rate from Sep-1979, which is associated with the Volker-led monetary policy tightening in October 1979
followed by subsequent market reactions and Federal Reserve policy responses to ongoing money growth,
inflation, and output growth outcomes. More generally, the plausibility of any oscillatory component in
macroeconomic forecasts could be questioned, or at least those with high frequencies, but I do not pursue
that consideration in this article.
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variance associated with (λ2, λ3) is the second largest. The ergodic variance for λ5 is much
larger than for λ4, showing that the component contributions to overall dynamics do not
strictly correspond to eigenvalue magnitudes. Note that the total ergodic variance ΩY (∞)
of the OAR(5) is 17.95, which is obviously smaller than the sum of the component ergodic
variances. The difference is due to the covariances in ΩY (∞), which are not shown in the
table. In particular, there is a notable negative covariance term, i.e. −1.28, between the
components associated with λ1 and λ5.

6.3 TVEAR estimation

As an example of estimating the TVOAR and TVEAR outlined in section 4.4, I set P = 4,
calibrate the parameters κ = 0.01 and Ωε = 1, and I use the arbitrary initialization of
φ0 = [0.88,−0.54, 0.84,−0.57] or the equivalent x0 = [2, 0.67,−0.67, 2], and P0 = 5IP .
Note that x0 simply uses linear spacing between 2 and −2, and φ0 is the coeffi cient vector
obtained from using x0 in the CREAR expressions from section 4.3.2. The TVOAR and
TVEAR therefore start from the same set of AR coeffi cients (the associated eigenvalues
are 0.76 ± 0.32i and −0.32 ± 0.86i), and the other calibrations and initializations are
set to be identical in the TVOAR and TVEAR so that the differences in their results are
attributable to how the state variables are used to obtain the coeffi cients. The parameters
κ and/or Ωε could, of course, be estimated by maximizing the log-likelihood function
associated with the Kalman filter, and formal diffuse priors could be used instead of the
starting covariance of P0 = 5IP , but both aspects are beyond what is required for the
empirical illustration here.

Figure 5: The results from estimating the TVOAR specified in section 4.4. The top panel plots
the time series of estimated TVOAR coeffi cients, and the bottom panel plots the magnitudes

of the eigenvalues associated with the estimated coeffi cients.

The top panel of figure 5 plots the estimates of φt from the TVOAR over the sample
period Jun-1947 to Sep-2008, and the bottom panel plots the absolute values of the
associated eigenvalues. The latter shows that the estimated AR(4) has regular occurrences
of explosive behavior, as evidenced by the periods when the eigenvalue magnitudes are
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above 1 (e.g. 1978 to 1980). Note that complex conjugate eigenvalues have the same
magnitude, in which case pairs of eigenvalue magnitudes overlap precisely, e.g. (λ1, λ2)
from 1990.
The top panel of figure 6 plots the estimates of xt from the TVEAR over the sample

period, the middle panel plots the associated magnitudes of the eigenvalues λ [xt, γ = 1],
and the last panel plots the associated coeffi cients φ (λ [xt, γ = 1]). The middle panel
shows that all estimated eigenvalues have |λk| < 1, consistent with the setting of γ = 1,
and so the associated AR(4) is therefore always non-explosive.

Figure 6: The results from estimating the TVEAR specified in section 4.4. The top panel plots
the time series of estimated TVEAR state variables, and the middle and bottom panels

respectively plot the eigenvalue magnitudes and coeffi cients associated with the estimated state
variables.

7 Conclusion

The eigensystem autoregression (EAR) framework introduced in this article allows AR
models with P lags, i.e. an AR(P ), to be specified and estimated directly in terms of P
eigenvalues. As such, rather than accepting the dynamics delivered by an unconstrained
AR estimated via OLS (an OAR), one can specify constraints within the EAR framework
that restrict the allowable dynamics of the estimated AR(P ) as may be required and/or
desired for the task at hand. Examples shown in the empirical application to US Treasury
bill rate data are using the EAR framework to restrict an explosive OAR to be mildly
explosive, non-explosive, or stationary/mean-reverting by respectively using eigenvalue

30



magnitude constraints of local-to-unity, unity, and less than unity. Additionally, the
example of applying the EAR framework with a unity magnitude constraint to a time-
varying AR estimation shows that a mean-reverting dynamics may be guaranteed at all
times, whereas a direct estimation with time-varying coeffi cients often results in periods
where the dynamics are explosive.
The EAR framework also produces closed-form forecasts and impulse response func-

tions (IRFs). This applies for any AR model, including those from an OAR once its
eigenvalues are obtained. The closed-form expressions turn out to be sums of compo-
nents that are themselves AR(1) or AR(2) models, and so AR(P ) forecasts/IRFs and
the historical data itself may be decomposed into those components. Such decomposi-
tions provide a diagnostic on the sources and contributions of the dynamics underlying
an AR(P ), such as the empirical example in section 6.2 that quantifies an implausible
pronounced high-frequency oscillation from an AR(2) component in an AR(5) model.
Other potential applications of the EAR framework to univariate applications, in

brief, include: (1) correcting downward bias in the mean-reversion rate of AR models
via their eigenvalues (e.g. using median-unbiased eigenvalue estimates analogous to An-
drews (1993) and Andrews and Chen (1994) for median-unbiased AR coeffi cients); (2)
estimating seasonal factors directly within the AR model (using complex conjugate eigen-
value pairs with their magnitudes constrained to 1, as in models 6 and 16 from table 1); (3)
avoiding parameter redundancy in autoregressive moving-average models (by constrain-
ing the AR and moving-average lag factors to ensure factor cancellations cannot occur);24

(4) non-explosive bootstrapping of ARs (by estimating AR models with an eigenvalue
magnitude constraint of 1 from bootstrapped samples).
The more important extension of the EAR framework is to the multivariate context,

i.e. considering a vector autoregression (VAR) from the perspective of its eigensystem,
which I hereafter refer to the eigensystem VAR (EVAR). Many aspects of the EAR frame-
work carry over to the EVAR framework, such as controlling the allowable dynamics of
the resulting EVAR by constraining the estimated eigenvalues, producing closed-form
forecasts/IRFs, and decomposing EVAR forecasts/IRFs and historical data into compo-
nents associated with AR(1) and AR(2) processes with respect to the EVAR eigenvalues.
As such, the EAR applications in this article and the potential EAR applications noted
above also apply to the EVAR. Additionally, the perspective provided by the estimated
eigenvectors for the EVAR provides insight on how variables move together, and con-
straining the eigenvectors allows control over allowable variable co-movements. Both of
these aspects should prove useful for VAR identification and structural modelling.
However, specifying and estimating the EVAR eigenvector parameters in conjunction

with the eigenvalues is more involved than for an EAR, which only requires eigenvalue
estimation to obtain the AR(P ) coeffi cients. In particular, the computationally effi cient
methods of vector convolution used within the EAR framework, and the even more effi -
cient hybrid method from section 4.3.4, are no longer generally applicable in the EVAR
framework; a fundamentally different estimation procedure is required. This difference
along with the full discussion of eigenvectors within the EVAR are the reasons I have de-
veloped the EAR separately, i.e. an EAR is best accommodated within its own framework
rather than as a single variable case within the EVAR framework.

24See, for example, Lütkepohl (2006) section 12 for further discussion on this issue and its implications.
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A Additional material and proofs for section 2

Sections A.1 to A.3 provide further details for the AR(2), respectively its companion
form and associated eigensystem decompositions for the distinct and repeated eigenvalues
cases, AR(2) forecast/IRF functions, and forecast/IRF functions when the eigenvalues
are complex conjugate pairs. Sections A.4 and A.5 respectively provide the proofs for
Propositions 1 and 2.

A.1 AR(2) companion form

The companion form for an AR(2) is:[
yt
yt−1

]
=

[
φ1 φ2

1 0

] [
yt−1

yt−2

]
+

[
εt
0

]
(61)

When the eigenvalues are distinct, the AR(2) companion matrix may be expressed as
the eigensystem decomposition:[

φ1 φ2

1 0

]
=

[
λ1 λ2

1 1

] [
λ1 0
0 λ2

] [
λ1 λ2

1 1

]−1

(62)

which may be verified by direct evaluation. That is, abbreviating the previous equation to
Φ = V ΛV −1, the inverse of the eigenvector matrix V may be expressed as its determinate
multiplied by the adjugate of V , i.e.:

V =

[
λ1 λ2

1 1

]−1

=
1

λ1 − λ2

[
1 −λ2

−1 λ1

]
(63)

Multiplying out V Λadj(V ) gives:[
λ1 λ2

1 1

] [
λ1 0
0 λ2

] [
1 −λ2

−1 λ1

]
=

[
λ2

1 − λ2
2 λ1λ

2
2 − λ2

1λ2

λ1 − λ2 0

]
(64)

and then multiplying the factored result of V Λadj(V ) by the determinant gives:

1

λ1 − λ2

[
(λ1 − λ2) (λ1 + λ2) −λ1λ2 (λ1 − λ2)

λ1 − λ2 0

]
=

[
λ1 + λ2 −λ1λ2

1 0

]
=

[
φ1 φ2

1 0

]
(65)

where the final result uses (φ1, φ2) = (λ1 + λ2,−λ1λ2) from equation 7.
When the eigenvalues are repeated, the AR(2) companion matrix may be expressed

as the eigensystem decomposition:25[
φ1 φ2

1 0

]
=

[
λ1 1
1 0

] [
λ1 1
0 λ1

] [
λ1 1
1 0

]−1

25See Wilkinson (1965) pp. 14-15. Hamilton (1994) pp. 18-19 specifies the.form of the eigenvalue
matrix Λ, but not the eigenvector matrix V . Note that V is a confluent Vandermonde matrix and, as
in footnote 13 from section 5.1 of this article, such matrices are applied in areas such as polynomial
interpolation, signal processing, and control theory.
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which may be verified by direct evaluation. That is:[
λ1 1
1 0

] [
λ1 1
0 λ1

] [
λ1 1
1 0

]−1

=

[
λ2

1 2λ1

λ1 1

]
×
[

0 1
1 −λ1

]
=

[
2λ1 −λ2

1

1 0

]
=

[
φ1 φ2

1 0

]
(66)

A.2 AR(2) forecasts/IRFs

The point forecasts/IRFs for an AR(2) are obtained as:

Et [yt+h] =
[

1 0
] [ φ1 φ2

1 0

]h [
yt
yt−1

]
(67)

When the eigenvalues are distinct, equation 67 may be expressed as:

Et [yt+h] =
[

1 0
]([ λ1 λ2

1 1

] [
λ1 0
0 λ2

] [
λ1 λ2

1 1

]−1
)h [

yt
yt−1

]
=

[
1 0

] [ λ1 λ2

1 1

] [
λ1 0
0 λ2

]h [
λ1 λ2

1 1

]−1 [
yt
yt−1

]
=

[
λ1 λ2

] [ λh1 0

0 λh2

] [
λ1 λ2

1 1

]−1 [
yt
yt−1

]
=

[
λ1 λ2

] [ λh−1
1 0

0 λh−1
2

] [
λ1 0
0 λ2

] [
λ1 λ2

1 1

]−1 [
yt
yt−1

]
=

[
λh1 λh2

] [ X1,t

X2,t

]
= λh1X1,t + λh2X1,t (68)

where: [
X1,t

X2,t

]
=

[
λ1 0
0 λ2

] [
λ1 λ2

1 1

]−1 [
yt
yt−1

]
=

1

λ1 − λ2

[
λ1 0
0 λ2

] [
1 −λ2

−1 λ1

] [
yt
yt−1

]
=

1

λ1 − λ2

[
λ1 0
0 λ2

] [
yt − λ2yt−1

−yt + λ1yt−1

]
=

1

λ1 − λ2

[
λ1yt − λ1λ2yt−1

−λ2yt + λ1λ2yt−1

]
(69)

The forecast/IRF expression λh1X1,t + λh2X1,t in the case of distinct eigenvalues ap-
plies to pairs of real or complex conjugate eigenvalues. In the real case, [X1,t, X2,t]

′ will
obviously have real values, and so the AR(2) forecasts/IRFs are the sum of two AR(1)
processes. The complex conjugate case produces a sum of two complex AR(1) processes
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which, as shown section A.3, may be re-expressed in terms of real-valued trigonometric
functions.
When the eigenvalues are repeated, and so both must be real, equation 67 may be

expressed as:

Et [yt+h] =
[

1 0
]([ λ1 1

1 0

] [
λ1 1
0 λ1

] [
λ1 1
1 0

]−1
)h [

yt
yt−1

]
=

[
1 0

] [ λ1 1
1 0

] [
λ1 1
0 λ1

]h [
λ1 1
1 0

]−1 [
yt
yt−1

]
(70)

=
[

1 0
] [ λ1 1

1 0

] [
λh1 hλh−1

1

0 λh1

] [
λ1 1
0 λ1

]−1

×
[
λ1 1
0 λ1

] [
λ1 1
1 0

]−1 [
yt
yt−1

]
=

[
λh1 hλh−1

1

] [ X1,t

X2,t

]
(71)

where: [
X1,t

X2,t

]
=

[
λ1 1
0 λ1

] [
λ1 1
1 0

]−1 [
yt
yt−1

]
=

[
yt

λ1yt − λ2
1yt−1

]
(72)

so [X1,t, X2,t]
′ are also obviously real.

A.3 AR(2) with complex conjugate eigenvalues

When the AR(2) eigenvalues are a complex conjugate pair, [X1,t, X2,t]
′ will also be a

complex conjugate pair, which may be shown by direct evaluation. That is, in the ex-
pression for [X1,t, X2,t]

′ for the distinct eigenvalue case, setting λ2 = λ1 where λ1 =
Re (λ1) + i Im (λ1) gives:[

X1,t

X2,t

]
=

1

λ1 − λ1

[
λ1yt − λ1λ1yt−1

−λ1yt + λ1λ1yt−1

]
=

1

2i Im (λ1)

[
[Re (λ1) + i Im (λ1)] yt − |λ1|2 yt−1

− [Re (λ1)− i Im (λ1)] yt + |λ1|2 yt−1

]
=

−i
2 Im (λ1)

[
i Im (λ1) yt +

[
Re (λ1) yt − |λ1|2 yt−1

]
i Im (λ1) yt −

[
Re (λ1) yt − |λ1|2 yt−1

] ]
=

1

2 Im (λ1)

[
Im (λ1) yt − i

[
Re (λ1) yt − |λ1|2 yt−1

]
Im (λ1) yt + i

[
Re (λ1) yt − |λ1|2 yt−1

] ] (73)

Therefore:

Et [yt+h] =
[
λhk λhk

] [ X1,t

X1,t

]
(74)

The forecasts/IRFs for an AR(2) with complex conjugate eigenvalues may also be
expressed in trigonometric form, which is a perspective that clearly shows the oscillatory
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nature of the contributions to forecasts/IRFs from AR(2) components. Hence, setting
(λ1, λ1) = r exp (±iθ) gives:

Et [yt+h] =
[
λhk λhk

] [ X1,t

X1,t

]
=

[
[r exp (iθ)]h [r exp (−iθ)]h

] [ Re (X1,t) + i Im (X1,t)
Re (X1,t)− i Im (X1,t)

]
= rh

[
exp (ihθ) exp (−ihθ)

] [ Re (X1,t) + i Im (X1,t)
Re (X1,t)− i Im (X1,t)

]
(75)

and exp (ihθ) may be converted to trigonometric using the Euler formula, i.e.:

exp (iθ) = cos (θ) + i sin (θ) (76)

and the De Moivre formula, i.e.:

[cos (θ) + i sin (θ)]h = cos (hθ) + i sin (hθ) (77)

That is:

exp (ihθ) = [exp (iθ)]h

= [cos (θ) + i sin (θ)]h

= cos (hθ) + i sin (hθ) (78)

Setting Re (X1,t) + i Im (X1,t) = a+ ib for notational convenience:

rh
[

exp (ihθ) exp (−ihθ)
] [ Re (X1,t) + i Im (X1,t)

Re (X1,t)− i Im (X1,t)

]
= rh

[
cos (hθ) + i sin (hθ) cos (hθ)− i sin (hθ)

] [ a+ ib
a− ib

]
= rh [a cos (hθ) + ib cos (hθ) + ia sin (hθ)− b sin (hθ)

+a cos (hθ)− ib cos (hθ)− ia sin (hθ)− b sin (hθ)]

= rh [2a cos (hθ)− 2b sin (hθ)] (79)

and therefore:

λh1X1,t + λh2X2,t = 2rh [Re (X1,t) cos (hθ)− Im (X1,t) sin (hθ)] (80)

This result matches that obtained in Hamilton (1994) pp. 14-16.

A.4 Generalized AR(2) triangle

Proof of Proposition 1. Given the expression for the eigenvalues of the AR(2) from
equation 6 of section 2.2, the objective is to constrain their magnitudes to a maximum of
γ, i.e.:

(|λ1| , |λ2|) =

∣∣∣∣∣φ1 ±
√
φ2

1 + 4φ2

2

∣∣∣∣∣ < γ (81)
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The eigenvalues can either be a distinct real pair if φ2
1 + 4φ2 > 0, a repeated real pair if

φ2
1 + 4φ2 = 0, or a complex conjugate pair if φ2

1 + 4φ2 < 0. For the distinct real eigenvalue

case, the largest eigenvalue will be 1
2

(
φ1 +

√
φ2

1 + 4φ2

)
, which needs to be less than γ,

hence:

φ1 +

√
φ2

1 + 4φ2 < 2γ√
φ2

1 + 4φ2 < 2γ − φ1

φ2
1 + 4φ2 < (2γ − φ1)2

φ2
1 + 4φ2 < 4γ2 − 4γφ1 + φ2

1

φ2 < γ2 − γφ1 (82)

and the smallest eigenvalue will be 1
2

(
φ1 −

√
φ2

1 + 4φ2

)
, which needs to be greater than

−γ, hence:

φ1 −
√
φ2

1 + 4φ2 > −2γ

−
√
φ2

1 + 4φ2 > −2γ − φ1

φ2
1 + 4φ2 < (2γ + φ1)2

φ2
1 + 4φ2 < 4γ2 + 4γφ1 + φ2

1

φ2 < γ2 + γφ1 (83)

In summary, φ2 < γ2 − γφ1 and φ2 > γ2 − γφ1, so φ2 < γ2 − γ |φ1| = γ (γ − |φ1|).
For the repeated real eigenvalue case, both eigenvalues will be 1

2
φ1, which needs to

have an absolute value less than γ. Hence:

−2γ < φ1 < 2γ (84)

For the complex eigenvalue case, the modulus of both eigenvalues is calculated as |a± ib| =√
a2 + b2, where a = 1

2
φ1 and b = −

(
φ2

1 + 4φ2

)
. Hence, setting the modulus to be less

than γ gives: √
φ2

1

4
− φ2

1 + 4φ2

4
< γ√

−φ2 < γ

−φ2 < γ2

φ2 > −γ2 (85)

A.5 Real eigenvalue region of AR(2) stability triangle

Proof of Proposition 2. From equation 7 of 2.2, i.e. (φ1, φ2) = (λ1 + λ2,−λ1λ2), two
positive eigenvalues will result in (φ1 > 0, φ2 < 0), which is the bottom-right quadrant of
the (φ1, φ2) plot in figure 2. The region is then defined by the complex and right-hand
boundaries of the stability triangle, i.e. respectively φ2 = −1

4
φ2

1 and 1− φ1.
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The case for two negative eigenvalues is analogous to the case for two positive eigen-
values, i.e. equation 7 will result in (φ1 < 0, φ2 < 0), which is the bottom-left quadrant
of the (φ1, φ2) plot. The region is then defined by the complex boundary and left-hand
boundary 1 + φ1 of the stability triangle.
The case for one positive and one negative eigenvalue results in φ2 > 0, which is in the

top two quadrants of the (φ1, φ2) plot. The region is defined by the left- and right-hand
boundaries of the stability triangle.
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B Additional material and proofs for section 4

This appendix provides details for the CMLE of the OAR and EAR models in section 4,
and also the proof of Proposition 3. Section B.1 provides the exposition that leads to an
OAR, and section B.2 provides the exposition that leads to the NLS estimates of an EAR
(i.e. a PREAR or CREAR). Sections B.3 and B.4 respectively show that the Jacobians
for the NLS estimation of the PREAR and CREAR are amenable to analytic calculation,
should additional computational effi ciency be required in any application. For notational
convenience and clarity in sections B.2 to B.5, I abbreviate log (L [Θ,Ω]) to log (L), and
φ (λ [x]) to φ (λ) or φ (x) depending on the context.

B.1 CMLE to produce OAR parameter estimates

For the OAR log-likelihood function, the substitution of εt = yt−φYt−1 from equation 12
into equation 15 gives:

log (L) = −T
2

log (2π)− T

2
log (Ω)− 1

2Ω

T∑
t=1

[yt − φYt−1]2

= −T
2

log (2π)− T

2
log (Ω)− 1

2Ω
[y − φY−1] [y − φY−1]′

= −T
2

log (2π)− T

2
log (Ω)− 1

2Ω

[
yy′ − 2yY ′−1φ

′ + φY−1Y
′
−1φ

′] (86)

where the second line expresses the summation as the inner product of the vector y−φY−1,
with y being a 1 × T vector containing all yt, and Y−1 being a P × T matrix containing
all Yt−1. Note also that the third line uses yY ′−1φ

′ = φY−1y
′ (given both expressions

are scalars, so their transposes are equal to each other) to obtain −yY ′−1φ
′ − φY−1y

′ =
−2yY ′−1φ

′.
To find the values of φ that maximize log (L), differentiate log (L) with respect to φ′

and set the result to zero, i.e.:

0 =
∂

∂φ′
log (L)

= −0− 0− ∂

∂φ′

(
1

2Ω

[
yy′ − 2yY ′−1φ

′ + φY−1Y
′
−1φ

′])
= 2yY ′−1 + 2φY−1Y

′
−1

φY−1Y
′
−1 = yY ′−1

φ = yY ′−1

(
Y−1Y

′
−1

)−1
(87)

Note that for the third line, I have used the following matrix calculus results:26

∂ (a′u)

∂u
= a′ (88a)

∂ (u′Au)

∂u
= 2u′A (88b)

26See Petersen and Pedersen (2012), for example, but note that I use the numerator layout convention.
Also note that the vector φ is in row form, which is why I have taken the differential with respect to φ′.
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where a and u are generic column vectors, and A is a generic square matrix.
With (y − φY−1) (y − φY−1)′ = εε′, the value of Ω that maximizes log (L) is calculated

as:

0 =
∂

∂Ω
log (L)

= −T
2

∂ log (Ω)

∂Ω
− 1

2

∂Ω−1

∂Ω
εε′

= −TΩ−1 + Ω−2εε′

TΩ = εε′

Ω =
1

T
εε′ (89)

Note that the expressions in equations 87 and 89 are transposes of the typical OLS
forms that apply when data are expressed in columns. I have specified the data for the
AR to be in rows, which is consistent with the format for vector autoregressions.

B.2 CMLE to produce PREAR parameter estimates

For the PREAR optimization, substituting εt = yt−φ (x)Yt−1 from equation 21 in section
4.3.1, or the analogous expression for the CREAR in section 4.3.2, into equation 15 and
re-arranging as in section B.1 gives the following log-likelihood function:

log (L) = −T
2

log (2π)− T

2
log (Ω)

− 1

2Ω
[y − φ (x)Y−1] [y − φ (x)Y−1]′ (90)

In this case, log (L) is a non-linear function of x, so the values of x that maximize
log (L) cannot be obtained analytically. However, as is typically done, an initial value
of x may be improved upon iteratively until a specified condition for convergence. The
linear approximation for x is obtained from a first-order Taylor expansion for φ (x) around
starting value of x0, i.e.:

φ (x) ' φ (x0) + [x− x0]
∂ [φ (x)]′

∂x′

∣∣∣∣
x=x0

= φ (x0)− x0
∂ [φ (x0)]′

∂x′
+ x

∂ [φ (x0)]′

∂x′
(91)

where the expression ∂ [φ (x)]′ /∂x′ is the Jacobian of [φ (x)]′ with respect to x′, which is
the following P × P matrix:

∂ [φ (x)]′

∂x′
=


∂[φ(x)]1
∂x1

· · · ∂[φ(x)]1
∂xP

... · · · ...
∂[φ(x)]P
∂x1

· · · ∂[φ(x)]P
∂xP

 (92)

and ∂ [φ (x0)]′ /∂x′ is ∂ [φ (x)]′ /∂x′ evaluated at x = x0.
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Substituting the approximation for φ (x) into y − φ (x)Y−1 gives:

y − φ (x)Y−1 ' y −
(
φ (x0)− x0

∂ [φ (x0)]′

∂x′
+ x

∂ [φ (x0)]′

∂x′

)
Y−1

= y −
(
φ (x0)− x0

∂ [φ (x0)]′

∂x′

)
Y−1 − x

∂ [φ (x0)]′

∂x′
Y−1

= y∗ − xY ∗−1 (93)

where:

y∗ = y −
(
φ (x0)− x0

∂ [φ (x0)]′

∂x′

)
Y−1 (94a)

Y ∗−1 =
∂ [φ (x0)]′

∂x′
Y−1 (94b)

Using y∗ − xY ∗−1 within log (L) obtains the following:

log (L) = −T
2

log (2π)− T

2
log (Ω)− 1

2Ω

[
y∗ − xY ∗−1

] [
y∗ − xY ∗−1

]′
(95)

which is linear with respect to x. Therefore, the same steps as in section B.1 can be
followed to obtain estimates of x and Ω given the starting value of x0, i.e.:

x = y∗Y ∗′−1

(
Y ∗−1Y

∗′
−1

)−1
(96a)

Ω =
1

T
ε (x0) [ε (x0)]′ (96b)

where ε (x0) = y∗−xY ∗−1. The process may be iterated to convergence by setting x0 to the
estimate x and repeating the process until the specified convergence criteria have been
met.
Note that the process outlined above could also be followed for an EAR with un-

constrained eigenvalues, i.e. where yt = φ (λ)Yt−1 + εt from equation 17. However, as
discussed in section 4.3.5, the additional computational expense makes such an optimiza-
tion redundant relative to OAR estimation.

B.3 PREAR analytic Jacobian

The simple functional forms used to obtain the eigenvalue set λ and the coeffi cient set φ
for the PREAR means that the Jacobian required for the NLS estimation is amenable to
analytic calculation. That is, the elements of the Jacobian may be obtained by using the
chain rule:

∂ [φ (x)]′i
∂xj

=
∂ [φ (λ)]′i
∂λj

∂λj
∂xj

(97)

Regarding the partial differential ∂ [φ (λ)]′i /∂λj, the entire column ∂ [φ (λ)]′ /∂λj (i.e.
for all of the φ (λ) elements) may be obtained by differentiating the product of the eigen-
value lag factors from equation 10, i.e.:

∂

∂λj

P∏
k=1

(1− λkL) =
∂

∂λj
(1− λjL)

P∏
k=1,k 6=j

(1− λkL)

= −L
P∏

k=1,k 6=j

(1− λkL) (98)
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The product from the resulting expression may be evaluated as for φ (λ) itself, i.e. by
taking the convolution of all factors [1,−λk] except for the k = j factor which is replaced
with [0,−1]. The resulting vector will again contain P +1 elements, with the first element
now equal to zero. Negating the remaining P elements obtains ∂ [φ (λ)]′ /∂λj. In practice,
it is more computationally effi cient to obtain the convolution for ∂ [φ (λ)]′ /∂λj from the
original convolution results that are already available for φ (λ), rather than undertake the
full alternative convolution. That is, apply vector deconvolution to the original P + 1
vector wP = [1,−φ1 (λ) , . . . ,−φP (λ)] and the vector [1,−λj] to get the P vector w∗P that
represents

∏P

k=1,k 6=j
(1− λkL).27 It turns out that w∗P is already the required result for

∂ [φ (λ)]′ /∂λj. That is, if w∗P was convolved with [0,−1], it would obtain the P + 1 vector

[0,−w∗P ] that represents −L
∏P

k=1,k 6=j
(1− λkL). Ignoring the first entry of zero from

[0,−w∗P ] and negating the remaining P elements returns w∗P .
The partial differential ∂λj/∂xj, which is a scalar result, may be evaluated from the

scaled logistic function as follows:

λj = γ [1 + exp (−xj)]−1

∂

∂xj
[1 + exp (−xj)]−1 = γ

∂

∂u
u−1 ∂

∂xj
[1 + exp (−xj)]

= γ ×−u−2 ×− exp (−xj)

= γ
exp (−xj)

[1 + exp (−xj)]2
(99)

where the second line uses the chain rule with u = [1 + exp (−xj)]−1.
Combining the results for ∂∂ [φ (λ)]′ /∂λj (i.e. the vector w∗P ) and ∂λj/∂xj (a scalar)

gives the final result for the entire column ∂ [φ (λ)]′ /∂xj as:

∂ [φ (x)]′

∂xj
=

∂ [φ (λ)]′

∂λj

∂λj
∂xj

= (w∗P )′
exp (−xj)

[1 + exp (−xj)]2
(100)

B.4 CREAR analytic Jacobian

Obtaining an analytic Jacobian matrix for the CREAR is more involved than for the
PREAR given that processing the pairs of (xk, xk+1) that underlie the AR(2) coeffi cients(
φ∗k, φ

∗
k+1

)
involves a logistic function for φ

∗
k+1 nested in the logistic function for φ

∗
k. Nev-

ertheless, the function forms remain simple enough to obtain relatively succinct analytic
results.
First, express the AR(P ) as the convolution of second-order lag polynomials associated

with the sets of AR(2) coeffi cients
(
φ∗k, φ

∗
k+1

)
, i.e.:

φ (x) =

P/2∏
k=1 step 2

(
1− φ∗kL− φ∗k+1L

2
)

(101)

27The vector deconvolution algorithm is routine for dividing an algebraic polynomial by another poly-
nomial. The MatLab function is “deconv(wP , [1,−λj ])”, otherwise the algorithm is straightforward to
code as a double summation.
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where k is now an index for each pair of AR(2) coeffi cients
(
φ∗1,k, φ

∗
2,k

)
, “k = 1 step 2”

is notation to represent each of those coeffi cient pairs, and P/2 represents the number of
pairs. The case for when P is an odd number is discussed at the end of this section.
Analogous to the PREAR, the partial differential of the entire column ∂ [φ (λ)]′ /∂λj

may be calculated by differentiating the lag polynomial, i.e.:

∂φ (x)

∂xj
=

∂

∂xj

(
1− φ∗jL− φ∗j+1L

2
) P/2∏
k=1 step 2, k 6=j

(
1− φ∗kL− φ∗k+1L

2
)

(102)

and the entire line of ∂φ (x) /∂xj+1 is calculated similarly. Both calculations require φ
∗
j

and φ∗j+1 to be expressed in terms of xj and xj+1. For the coeffi cient φ
∗
1,k, equation 23

from section 4.3.2 is:

φ∗k = 2γ

(
2

1 + exp (−xk)
− 1

)
(103)

For the coeffi cient φ∗2,k, equation 25 from section 4.3.2 is:

φ∗k+1 =
φ
∗
1,k+1 + γ2

1 + exp (−xk+1)
− γ2 (104)

with φ
∗
1,k+1 = γ (γ − |φ∗k|). Therefore:

φ∗k+1 =
γ (γ − |φ∗k|) + γ2

1 + exp (−xk+1)
− γ2

=
2γ2 − γ |φ∗k|

1 + exp (−xk+1)
− γ2

=
2γ2 − γ

∣∣∣2γ ( 2
1+exp(−xk)

− 1
)∣∣∣

1 + exp (−xk+1)
− γ2

=
2γ2

(
1−

∣∣∣ 2
1+exp(−xk)

− 1
∣∣∣)

1 + exp (−xk+1)
− γ2 (105)

In summary, each second-order lag polynomial 1 − φ∗kL − φ∗k+1L
2 therefore has the

following dependence on xk and xk+1:

1− φ∗kL− φ∗k+1L
2

= 1− 2γ

(
2

1 + exp (−xk)
− 1

)
L−

2γ2
(

1−
∣∣∣ 2

1+exp(−xk)
− 1
∣∣∣)

1 + exp (−xk+1)
− γ2

L2 (106)

The partial differential of 1− φ∗kL− φ∗k+1L
2 with respect to xk is:

∂

∂xk

(
1− φ∗kL− φ∗k+1L

2
)

= − ∂

∂xk
φ∗kL−

∂

∂xk
φ∗k+1L

2 (107)

where:

∂

∂xk
φ∗1,k = 2γ

∂

∂xk

(
2

1 + exp (−xk)
− 1

)
= 4γ

exp (−xk)
[1 + exp (−xk)]2

(108)
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and:

∂

∂xk
φ∗k+1 =

∂

∂xk

2γ2
(

1−
∣∣∣ 2

1+exp(−xk)
− 1
∣∣∣)

1 + exp (−xk+1)
− γ2


=

2γ2

1 + exp (−xk+1)
· ∂

∂xk

(
1−

∣∣∣∣ 2

1 + exp (−xk)
− 1

∣∣∣∣)
= − 2γ2

1 + exp (−xk+1)
· ∂

∂xk

∣∣∣∣ 2

1 + exp (−xk)
− 1

∣∣∣∣
= − 2γ2

1 + exp (−xk+1)
· exp (−xk)

[1 + exp (−xk)]2
· signum [1− exp (−xk)] (109)

where signum (·) is the sign function, and signum
[

2
1+exp(−xk)

− 1
]

= signum
[

1−exp(−xk)
1+exp(−xk)

]
=

signum [1− exp (−xk)] because 1 + exp (−xk) is always positive.
The lag polynomial ∂

(
1− φ∗jL− φ∗j+1L

2
)
/∂xj may be represented as the vector u =[

0,−∂φ∗k/∂xk,−∂φ∗k+1/∂xk
]
, with the elements provided by the results for ∂φ∗k/∂xk and

∂φ∗k+1/∂xk. To obtain ∂ [φ (x)]′ /∂xj, first deconvolve the original convolution vector wP =
[1,−φ1 (λ) , . . . ,−φP (λ)] by

[
1,−φ∗k, φ∗k+1

]
to obtain the vector v and then convolve u with

v. The result is a P + 1 vector with the first element equal to zero, and negating the
remaining P elements obtains ∂ [φ (x)]′ /∂xj.
The partial differential of 1− φ∗kL− φ∗k+1L

2 with respect to xk+1 is:

∂

∂xk+1

(
1− φ∗kL− φ∗k+1L

2
)

= − ∂

∂xk+1

φ∗k+1L
2 (110)

where ∂φ∗k/∂xk+1 = 0 and:

∂

∂xk+1

φ∗k+1 = 2γ2

(
1−

∣∣∣∣ 2

1 + exp (−xk)
− 1

∣∣∣∣) · ∂

∂xk+1

[1 + exp (−xk+1)]−1

= 2γ2

(
1−

∣∣∣∣ 2

1 + exp (−xk)
− 1

∣∣∣∣) · exp (−xk+1)

[1 + exp (−xk+1)]2
(111)

With these partial differential results, the lag polynomial ∂
(
1− φ∗jL− φ∗j+1L

2
)
/∂xj+1

is represented as the vector
[
0, 0,−φ∗k+1/∂xk+1

]
. To obtain ∂ [φ (x)]′ /∂xj+1, first decon-

volve the original convolution vector as described earlier for ∂ [φ (x)]′ /∂xj, convolve that
result by

[
0, 0,−φ∗k+1/∂xk+1

]
to obtain the P + 1 vector, and negate the last P elements

to obtain ∂ [φ (x)]′ /∂xj+1.
When P is an odd number, the last line will be the partial differential ∂φ (x) /∂xP .

This would be calculated as for the PREAR, i.e.:

∂ [φ (x)]′

∂xP
= (w∗P )′

exp (−xP )

[1 + exp (−xP )]2
(112)

B.5 Hybrid CREAR

Proof of Proposition 3. Begin with the AR(P ) expressed as P eigenvalue factors, i.e.
from equation 10, and factor this into the product of (P −K) and K eigenvalue factors,

45



i.e.: [
P∏
k=1

(1− λkL)

]
yt = εt[

P∏
k=K+1

(1− λkL)

][
K∏
k=1

(1− λkL)

]
yt = εt[

P−K∏
k=1

(1− λkL)

][
K∏
k=1

(1− λkL)

]
yt = εt (113)

Expand both of the lag eigenvalue factor products into their equivalent lag polynomials
(i.e. as in equation 11), and apply the lag operator from the K-order polynomial to yt,
i.e.: [

1−
P−K∑
p=1

θpL
p

][
1−

K∑
p=1

δpL
p

]
yt = εt[

1−
P−K∑
p=1

θpL
p

][
yt −

K∑
p=1

δpyt−p

]
= εt (114)

Use δp and yt, . . . , yt−p to define the variable zt as follows:

zt = yt −
K∑
p=1

δpyt−p (115)

Apply the lag operator from the (P −K)-order polynomial to the variable zt to obtain
the OLS regression form for zt, i.e.:[

1−
P−K∑
p=1

θpL
p

]
zt = εt

zt =

[
P−K∑
p=1

θpL
p

]
zt + εt

zt =

P−K∑
p=1

θpzt−p + εt (116)

where the final line is the supplementary OAR with the variable zt = yt−
∑K

p=1 δpyt−p.
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C Additional material and proofs for section 5

This appendix provides details related to the closed-form forecasts and decompositions for
section 5. Section C.1 first establishes a proposition that Xk,t andXk+1,t will be a complex
conjugate pair when λhk and λ

h
k+1 are a complex conjugate pair. While both aspects in the

proposition are intuitively apparent, respectively because the product V V −1 = IP needs
to have only have real elements and λhkXk,t + λhk+1Xk+1,t should contribute a real number
to the forecasts, I’m not aware of a reference that explicitly establishes these required
properties.28 Section C.2 then provides the proof of Proposition 5, section C.3 provides
the trigonometric form for AR(2) forecast/IRF components, and section C.4 provides the
proof of Proposition 7.

C.1 Xt with pairs of complex conjugate eigenvalues

Proposition C.1 The complex conjugate columns k and k + 1 of the eigenvector matrix
V are paired with complex conjugate rows k and k + 1 in the inverse V −1, and therefore
the (Xk,t, Xk+1,t) pair associated with the complex conjugate eigenvalue pair (λk, λk+1)
will themselves be a complex conjugate pair.
Proof.

Xt = ΛP−1V −1Yt (117)

For notational convenience, first consider a specific case where there is only a single pair
of complex conjugate eigenvalues and they are arranged to be the first two entries, i.e.
λ =

[
λ1, λ1, λ3, . . . , λP

]
. The eigenvalue matrix Λ is therefore:

Λ = diag
([
λ1, λ1, λ3, . . . , λP

])
(118)

and the eigenvector matrix V will contain a complex conjugate pair of eigenvectors in its
first two columns. Define a block-diagonal permutation matrix A as follows:

A = diag ([A1, IP−2]) (119)

where IP−2 is the (P − 2)× (P − 2) identity matrix, A2 is:

A2 =

[
0 1
1 0

]
= A−1

2 (120)

and A2 = A−1
2 is apparent from A2

2 being the 2 × 2 identity matrix. The product V A
interchanges the first two columns of V , which results in V . Therefore, using V A = V
and taking its inverse gives:

(V A)−1 =
(
V
)−1

A−1V −1 = V −1

AV −1 = V −1 (121)

28Hamilton (1994) pp. 15-16 establishes that the constants c1 and c2 associated with c1λ
h
1 + c2λ

h
2 for

an AR(2) will be a complex conjugate pair if (λk, λk+1) is a complex conjugate pair, and section A.3 of
appendix A shows this by directly calculating (Xk,t, Xk+1,t). Section C.1 establishes the more general
case for an AR(2) component within an AR(P ).
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The product AV −1 interchanges the first two rows of V −1, and so AV −1 = V −1 establishes
that the first two rows of V −1 are a complex conjugate pair. Denote these two rows as
[V −1]1 and [V −1]2 = [V −1]1, and then the first two rows of Xt = ΛP−1V −1Yt will be:[

X1,t

X2,t

]
=

[
λ1 0

0 λ1

]P−1 [
[V −1]1
[V −1]1

]
Yt

=

[
λP−1

1 [V −1]1 Yt

λP−1
1 [V −1]1Yt

]

=

[
λP−1

1 [V −1]1 Yt

λP−1
1 [V −1]1 Yt

]
(122)

When λ contains more than a single set of complex conjugate eigenvalue pairs, the
procedure above is applied to each eigenvalue pair (λk, λk+1). In particular, the permu-
tation matrix A will contain A2 at each (k, k + 1) block entry, the (k, k + 1) columns of
complex conjugate eigenvectors in V will be associated with complex conjugate entries in
the (k, k + 1) rows of V −1, and each (Xk,t, Xk+1,t) pair will be:[

Xk,t

Xk+1,t

]
=

[
λP−1
k [V −1]1 Yt

λP−1
k [V −1]1 Yt

]
(123)

C.2 AR(2) component of an AR(P ) forecast/IRF

Proof of Proposition 5. Re-writing the sum associated with a complex conjugate
pairs proceeds in the reverse of the AR(2) exposition in section A.1. Hence:

λhkXk,t + λhk+1Xk+1,t

=
[
λhk λhk+1

] [ Xk,t

Xk+1,t

]
=

[
λk λk+1

] [ λhk 0

0 λhk+1

] [
λ−1
k 0
0 λ−1

k+1

] [
Xk,t

Xk+1,t

]
=

[
1 0

] [ λk λk+1

1 1

] [
λhk 0

0 λhk+1

] [
λk λk+1

1 1

]−1

×
[
λk λk+1

1 1

] [
λ−1
k 0
0 λ−1

k+1

] [
Xk,t

Xk+1,t

]
=

[
1 0

]([ λk λk+1

1 1

] [
λk 0
0 λk

]h [
λk λk+1

1 1

]−1
)[

1 1
λ−1
k λ−1

k+1

] [
Xk,t

Xk+1,t

]

=
[

1 0
]([ λk λk+1

1 1

] [
λk 0
0 λk+1

] [
λk λk+1

1 1

]−1
)h [

Xk,t +Xk+1,t

λ−1
k Xk,t + λ−1

k+1Xk+1,t

]
=

[
1 0

] [ φ∗k φ∗k+1

1 0

]h [
Xk,t +Xk+1,t

λ−1
k Xk,t + λ−1

k+1Xk+1,t

]
(124)
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where the final line uses the result:[
λk λk+1

1 1

] [
λk 0
0 λk+1

] [
λk λk+1

1 1

]−1

=

[
λk + λk+1 −λkλk+1

1 0

]
=

[
φ∗k φ∗k+1

1 0

]
(125)

with
(
φ∗k, φ

∗
k+1

)
= (λk + λk+1,−λkλk+1).

The expressions above apply to pairs of real or complex conjugate eigenvalues. In the
latter case, setting λk+1 = λk gives the following:[

Xk,t +Xk+1,t

λ−1
k Xk,t + λ−1

k+1Xk+1,t

]
=

[
Xk,t +Xk,t

λ−1
k Xk,t + λ−1

k Xk,t

]

=

[
2 Re (Xk,t)

λ−1
k Xk,t + λ−1

k Xk,t

]
=

[
2 Re (Xk,t)

2 Re
(
λ−1
k Xk,t

) ] (126)

and: [
φ∗k φ∗k+1

1 0

]
=

[
λk + λk −λkλk

1 0

]
=

[
2 Re (λk) − |λk|2

1 0

]
(127)

Therefore:

λhkXk,t + λhk+1Xk+1,t =
[

1 0
] [ 2 Re (λk) − |λk|2

1 0

]h [
2 Re (Xk,t)

2 Re
(
λ−1
k Xk,t

) ] (128)

which is the forecast/IRF expression for an AR(2).

As an aside, the last expression in the proof implies that [X1,t, X2,t]
′ for the actual

AR(2) in section A.1 with a complex conjugate pair of eigenvalues should give [yt, yt−1]′,
i.e.: [

2 Re (X1,t)
2 Re

(
λ−1

1 X1,t

) ] =

[
yt
yt−1

]
(129)

The equality 2 Re (X1,t) = yt is readily apparent using X1,t from the first row of equation
73, given the imaginary terms sum to zero, hence:

2 Re (X1,t) =
2

2 Im (λ1)
Im (λ1) yt

= yt (130)

The equality 2 Re
(
λ−1

1 X1,t

)
= yt−1 is not so apparent, but it may be obtained by directly

evaluating λ−1
1 X1,t with the substitution λ

−1
1 = λ1/ |λ1|2, i.e.:

λ−1
1 X1,t =

1

2 Im (λ1)

λ1

|λ1|2
{

Im (λ1) yt − i
[
Re (λ1) yt − |λ1|2 yt−1

]}
=

1

2 Im (λ1)

Re (λ1)− i Im (λ1)

|λ1|2

×
{

Im (λ1) yt − i
[
Re (λ1) yt − |λ1|2 yt−1

]}
(131)
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Expanding this λ−1
1 X1,t product expression and retaining just the real terms then gives:

2 Re
(
λ−1

1 X1,t

)
=

2

2 Im (λ1)

1

|λ1|2

×
{(

Re (λ1) Im (λ1) yt − Im (λ1)
[
Re (λ1) yt − |λ1|2 yt−1

])}
=

1

Im (λ1)

1

|λ1|2
(
Im (λ1) |λ1|2 yt−1

)
= yt−1 (132)

C.3 AR(2) component forecasts/IRFs in trigonometric form

The forecasts/IRFs for an AR(2) component with complex conjugate eigenvalues may
also be expressed in trigonometric form, analogous to the approach for the AR(2) itself
in section A.3 of appendix A. That is, setting (λ1, λ1) = r exp (±iθ) gives:

λhkXk,t + λhk+1Xk+1,t

=
[
λhk λhk

] [ Xk,t

Xk,t

]
= rh

[
exp (ihθ) exp (−ihθ)

] [ Re (Xk,t) + i Im (Xk,t)
Re (Xk,t)− i Im (Xk,t)

]
(133)

and exp (ihθ) may be converted to trigonometric form as in section A.3 using exp (ihθ) =
cos (hθ) + i sin (hθ), with the result:

λhkXk,t + λhk+1Xk+1,t

= rh
[

cos (hθ) + i sin (hθ) cos (hθ)− i sin (hθ)
] [ Re (Xk,t) + i Im (Xk,t)

Re (Xk,t)− i Im (Xk,t)

]
= 2rh [Re (Xk,t) cos (hθ)− Im (Xk,t) sin (hθ)] (134)

C.4 Historical components as AR(2) data

Proof of Proposition 7. A pair of AR(1) processes from Proposition 4 in section 5.2
is: [

Xk,t

Xk+1,t

]
=

[
λk 0
0 λk+1

] [
Xk,t−1

Xk+1,t−1

]
+

[
EX,k,t
EX,k+1,t

]
(135)

Pre-multiplying by
[
λk λk+1

1 1

]
gives:

[
λk λk+1

1 1

] [
Xk,t

Xk+1,t

]
=

[
λk λk+1

1 1

] [
λk 0
0 λk+1

] [
Xk,t−1

Xk+1,t−1

]
+

[
λk λk+1

1 1

] [
EX,k,t
EX,k+1,t

]
(136)
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and: [
λk λk+1

1 1

] [
λk 0
0 λk+1

] [
Xk,t−1

Xk+1,t−1

]
=

[
λk λk+1

1 1

] [
λk 0
0 λk+1

] [
λk λk+1

1 1

]−1 [
λk λk+1

1 1

] [
Xk,t−1

Xk+1,t−1

]
=

[
φ∗k φ∗k+1

1 0

] [
λkXk,t−1 + λk+1Xk+1,t−1

Xk,t−1 +Xk+1,t−1

]
(137)

Using this result and evaluation of the first and third lines of equation 136 gives:[
λkXk,t + λk+1Xk+1,t

Xk,t +Xk+1,t

]
=

[
φ∗k φ∗k+1

1 0

] [
λkXk,t−1 + λk+1Xk+1,t−1

Xk,t−1 +Xk+1,t−1

]
+

[
λkEX,k,t + λk+1EX,k+1,t

EX,k,t + EX,k+1,t

]
(138)

Using the first elements for each of the vector expressions above gives:

λkXk,t + λk+1Xk+1,t

=
[
φ∗k φ∗k+1

] [ λkXk,t−1 + λk+1Xk+1,t−1

Xk,t−1 +Xk+1,t−1

]
+ λkEX,k,t + λk+1EX,k+1,t (139)

and the second element may be used to complete the regression form of the AR(2). That
is:

Xk,t +Xk+1,t = λkXk,t−1 + λk+1Xk+1,t−1 + EX,k,t + EX,k+1,t (140)

and applying the lag operator to both sides gives:

Xk,t−1 +Xk+1,t−1 = λkXk,t−2 + λk+1Xk+1,t−2 + EX,k,t−1 + EX,k+1,t−1 (141)

Substituting the expression for Xk,t−1 +Xk+1,t−1 into equation 139 gives:

λkXk,t + λk+1Xk+1,t

=
[
φ∗k φ∗k+1

] [ λkXk,t−1 + λk+1Xk+1,t−1

λkXk,t−2 + λk+1Xk+1,t−2 + EX,k,t−1 + EX,k+1,t−1

]
+λkEX,k,t + λk+1EX,k+1,t

=
[
φ∗k φ∗k+1

] [ λkXk,t−1 + λk+1Xk+1,t−1

λkXk,t−2 + λk+1Xk+1,t−2

]
+λkEX,k,t + λk+1EX,k+1,t + φ∗k+1 (EX,k,t−1 + EX,k+1,t−1) (142)

The expressions above apply to pairs of real or complex conjugate eigenvalues. In the
latter case, setting λk+1 = λk and Xk+1,t = Xk,t gives:

2 Re (λkXk,t) =
[
φ∗k φ∗k+1

] [ 2 Re (λkXk,t−1)
2 Re (λkXk,t−2)

]
+2 Re (λkEX,k,t) + φ∗k+12 Re (EX,k,t−1) (143)
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D Additional material and proofs for section 5.4

This appendix first provides, in section D.1„background on the summation expression
for forecast error variances (FEVs). Section D.2 provides the proof of the closed-form
expression for the FEV summation in Proposition 9, which makes use of a supplementary
proposition and proof at the start of the section. Section D.3 provides the proof of the
closed-form expression for the ergodic variance in Proposition 10. Analytic examples of
the FEV and ergodic variances for the AR(1) and AR(2) models are provided in section
D.4.

D.1 Forecast errors and FEVs

The forecast error for a given horizon H is defined as:

yt+H − Et [yt+H ] = J (Yt+H − Et [Yt+H ]) (144)

and yt+H − Et [yt+H ] requires the contribution from each period h up to horizon H, i.e.:

Yt+1 − Et [Yt+1] = EY,t+1

Yt+2 − Et [Yt+2] = ΦEY,t+1 + EY,t+2

...

Yt+H − Et [Yt+H ] =
H−1∑
h=0

ΦhEY,t+H−h (145)

The FEV is obtained from the expected value of the forecast error Yt+H , i.e.:

ΩY (H) = Et
{

(Yt+H − Et [Yt+H ]) (Yt+H − Et [Yt+H ])′
}

= Et

{(
H−1∑
h=0

ΦhEY,t+H−h

)(
H−1∑
h=0

ΦhEY,t+H−h

)′}

= Et

{(
H−1∑
h=0

ΦhEY,t+H−h

)(
H−1∑
h=0

E ′Y,t+H−h
(
Φh
)′)}

=
H−1∑
h=0

ΦhEt
[
EY,t+H−hE

′
Y,t+H−h

] (
Φh
)′

(146)

where the last line retains only the EY,t+H−hE ′Y,t+H−h terms because the other terms have
an expected value of zero, given the assumed properties of the residuals in section 2.1,
i.e. Et [εuε

′
v] = Ωε if u = v and zero otherwise or simply iid normal εt ∼ N (0,Ωε).

Specifically, from equation 34, EY,t = [εt, 0, . . . , 0]′, so EY,uE ′Y,v is a P × P matrix with
εuεv as the (1, 1) element and zeros otherwise. Applying the expectations operator then
gives Et [εuεv] = Ωε if u = v and zero otherwise.
Hence, only Et

[
EY,t+H−hE

′
Y,t+H−h

]
will contain non-zero terms, i.e. Et

[
ε2
t+H−h

]
= Ωε

as the (1, 1) element and zeros otherwise, which may also be expressed as ΩEY = J ′ΩεJ .
In summary:

ΩY (H) =

H−1∑
h=0

ΦhΩEY

(
Φh
)′

(147)
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The FEV for Ωy (H) is obtained from ΩY (H) as:

Ωy (H) = J
H−1∑
h=0

ΦhΩEY

(
Φh
)′)

J ′ (148)

Note that my summation expression for Ωy (H) is equivalent to the summation expres-
sion from Lütkepohl (2006), although some alignment of notation is necessary to make
that clear. That is, the verbatim expression from Lütkepohl (2006) p.38, eq. 2.2.11 is:

Σy (h) := MSE [yt (h)] =

h−1∑
i=0

ΦiΣuΦ
′
i = Σy (h− 1) + Φh−1ΣuΦ

′
h−1 (149)

where, from Lütkepohl (2006) equation 2.1.17, Φi = JAiJ ′. My notation (on the left-
hand side of the following expressions) in terms of the Lütkepohl (2006) notation (on the
right-hand side) is Ωy (H) ≡ Σy (h), Φ ≡ A, Ωε ≡ Σu, JΦhJ ′ ≡ Φh, H ≡ h, and h ≡ i.
Furthermore:

J
H−1∑
h=0

ΦhΩEY

(
Φh
)′)

J ′ =
H−1∑
h=0

JΦhJ ′ΩεJ
(
Φh
)′
J ′ (150)

The right-hand side expression now replicates the summation expression in Lütkepohl
(2006) equation 2.1.17, but in my notation. Note that the subsequent equality in Lütke-

pohl (2006) equation 2.1.17, i.e.
∑h−1

i=0
ΦiΣuΦ

′
i = Σy (h− 1) + Φh−1ΣuΦ

′
h−1, is the re-

cursive expression for the FEV, which begins from Σu in for horizon h = 1, and adds
increments Φh 1ΣuΦ

′
h−1 for subsequent horizons. My aim to is to produce a closed-form

solution for the summation up to the given horizon.

D.2 Closed-form solution for FEV

Proposition D.1 Given the diagonal matrix Λh = diag
([
λh1 , . . . , λ

h
P

])
, its Hermitian (or

conjugate) transpose
(
Λ†
)h
, and a generic Hermitian matrix U , the individual elements

of the matrix product ΛhU
(
Λ†
)h
may be expressed as:[

ΛhU
(
Λ†
)h]

ij
= Uij

(
λiλj

)h
(151)

Proof. When multiplying two generic matrices A and B with a conformable inner di-
mension of K, the (i, j) element of the result, i.e. [AB]ij, is the summation [AB]ij =∑K

k=1
BikCkj. The matrix product ΛhUΛh contains two sets of matrix multiplications, so

the index l is used for the U
(
Λ†
)h
product, and the index k is used for the Λh

[
U
(
Λ†
)h]

product, i.e.: [
ΛhU

(
Λ†
)h]

ij
=

P∑
k=1

[
Λh
]
ik

P∑
l=1

Ukl
[
Λh
]†
lj

)

=
P∑
k=1

[
Λh
]
ik
Ukj

[
Λh
]†
jj

=
[
Λh
]
ii
Uij
[
Λh
]†
jj

(152)
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where
∑P

l=1
Ukl
[
Λh
]†
lj

= Ukj
[
Λh
]†
jj
because

(
Λ†
)h
is diagonal, so

[
Λh
]†
lj
is only non-

zero when l = j. Similarly,
∑P

k=1

[
Λh
]
ik
Ukj

[
Λh
]†
jj

=
[
Λh
]
ii
Uij
[
Λh
]†
jj
because

[
Λh
]
ik
is

only non-zero when k = i. Substituting the elements
[
Λh
]
ii

= λi and
[
Λh
]†
jj

= λj into[
Λh
]
ii
Uij
[
Λh
]†
jj
gives:

[
ΛhUΛh

]
ij

= λhi U
h
ijλj

h

= Uij
(
λiλj

)h
(153)

Directly evaluating an example with P = 2 illustrates the form that ΛhU
(
Λh
)†
will

take in general: [
λh1 0

0 λh2

] [
U11 U12

U21 U22

][
λ1

h
0

0 λ2
h

]

=

[
λh1 0

0 λh2

] [
U11λ1

h
U12λ2

h

U21λ1
h

U22λ2
h

]

=

[
λh1U11λ1

h
λh1U12λ2

h

λh2U21λ1
h

λh2U22λ2
h

]

=

[
U11

(
λ1λ1

)h
U12

(
λ1λ2

)h
U12

(
λ1λ2

)h
U22λ

h
2λ2

h

]
(154)

where U21λ1
h
λh2 = U12

(
λ1λ2

)h
. Note that any diagonal matrix could obviously be sub-

stituted for Λh, but the notation anticipates the context of the proof for Proposition
8.
Note that, for consistency with the notation in Proposition 8, I have based the proof

below on the eigensystem decomposition Φ = VXΛV −1
X , where VX = V Λ1−P with V and

Λ from the eigensystem decomposition Φ = V ΛV −1. The closed-form FEV and ergodic
variance expressions could be equivalently based on the eigensystem decomposition Φ =

V ΛV −1, in which case V −1
X ΩEY

(
V −1
X

)†
in the proof of Proposition 8 would be replaced

by V −1ΩEY (V −1)
† and the final calculation would be Ωy (H) = JV ΩX (H)V †J ′. The

equivalence is apparent as follows:

VXΛV −1
X =

(
V Λ1−P )Λ

(
V Λ1−P )−1

= V Λ1−PΛΛP−1V −1

= V ΛV −1 (155)

Proof of Proposition 8. Begin with the FEV summation expression, i.e.:

ΩY (H) =

H−1∑
h=0

ΦhΩEY

(
Φh
)′

(156)
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and use the decomposition Φ = VXΛV −1
X to re-express the summation as follows:

ΩY (H) =

H−1∑
h=0

VXΛhV −1
X ΩEY

(
VXΛhV −1

X

)†
=

H−1∑
h=0

VXΛhV −1
X ΩEY

(
V −1
X

)† (
Λ†
)h
V †X

= VX

[
H−1∑
h=0

ΛhΩEX

(
Λ†
)h]

V †X (157)

where “†”denotes the Hermitian/conjugate transpose, ΩEX = V −1
X ΩEY

(
V −1
X

)†
, which is a

Hermitian P ×P matrix, i.e.ΩEX ,j,i = ΩEX ,j,i, and I will denote the matrix defined by the
summation in the square brackets as ΩX (H), i.e.:

ΩX (H) =
H−1∑
h=0

ΛhΩEX

(
Λ†
)h

(158)

From Proposition 12, each (i, j) element in the summation for ΩX (H) is therefore the
following:

[ΩX (H)]ij =

[
H−1∑
h=0

ΛhΩEX

(
Λ†
)h]

ij

=
H−1∑
h=0

ΩEX ,ij

(
λiλj

)h
= ΩEX ,ij

H−1∑
h=0

(
λiλj

)h
= ΩEX ,ij

1−
(
λiλj

)H
1− λiλj

(159)

where the summation of the geometric series
(
λiλj

)h
in the third line has been replaced

with its closed-form analytic result in last line, which requires
∣∣λiλj∣∣ < 1. That is, while

the sum of a geometric series is well-known, in the present context:

(
1− λiλj

)H−1∑
h=0

(
λiλj

)h
=

(
H−1∑
h=0

(
λiλj

)h)− [H−1∑
h=0

(
λiλj

)h+1

]

=

(
1 +

H−1∑
h=1

(
λiλj

)h)− [ H∑
h=1

(
λiλj

)h]

=

(
1 +

H−1∑
h=1

(
λiλj

)h)− [(λiλj)
H +

H−1∑
h=1

(
λiλj

)h]
= 1−

(
λiλj

)H
H−1∑
h=0

(
λiλj

)h
=

1−
(
λiλj

)H
1− λiλj

(160)
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Each (i, j) element of ΩX (H) may therefore be calculated using the closed-form so-
lution given in equation 159, although only P (P + 1) /2 unique calculations are required
due to its symmetry. The FEV for an arbitrary horizon H is then:

ΩY (H) = VXΩX (H)V †X (161)

and the FEV for Ωy (H) is:

Ωy (H) = JΩY (H) J ′

= JVXΩX (H)V †XJ
′ (162)

D.3 Closed-form solution for ergodic variance

The section presents the proof for Proposition 9, and then further discusses the ergodic
variance result in the context of the literature.
Proof of Proposition 9. From Lütkepohl (2006) eq. 2.1.18, the ergodic variance for
yt, which I will denote Ωy (∞), is:

Ωy (∞) =
∞∑
h=0

JΦhΩEY

(
Φh
)′
J ′ (163)

Using the results from the previous section, the closed-form expression for this infinite
sum is:

Ωy (∞) = lim
H→∞

[Ωy (H)]

= lim
H→∞

[
JV ΩX (H)V †J ′

]
= JV ΩX (∞)V †J ′ (164)

where:

ΩX (∞) = lim
H→∞

[ΩX (H)]

=

∞∑
h=0

ΛhΩEX

(
Λ†
)h

(165)

and the elements of ΩX (∞) are obtained as:

[ΩX (∞)]ij = lim
H→∞

(
ΩEX ,ij

1−
(
λiλj

)H
1− λiλj

)
= ΩEX ,ij

1

1− λiλj
(166)

The ergodic variance is also the solution to the discrete-time Lyapunov equation,
which in the present context may be expressed as ΦΩy (∞) Φ + ΩEX = Ωy (∞), where all
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eigenvalues of Φ have magnitudes less than 1. As discussed in Doan (2010), there are a
variety of methods for solving the Lyapunov equation. The method based on vectorization
is often presented in econometrics textbooks, i.e.:29

vec [ΩY (∞)] = (IP 2 − Φ⊗ Φ)−1 vec (ΩEY ) (167)

Doan (2010) notes that the inversion of the P 2 × P 2 matrix requires O (P 6) arithmetic
operations, while methods that retain the original matrix dimensions, e.g. Kitagawa
(1977) and Johannsen (2002), require just O (P 3) operations. The method developed
in the present paper is also O (P 3), so is within the class of effi cient class of Lyapunov
equation solutions, but the relative advantage is the intuition of the result being the
infinite limit of the FEV summation. Note also that my finite-horizon ΩY (H) and infinite-
horizon results ΩY (∞) are the discrete-time analogue of the continuous-time expression
derived in Rome (1969).
In light of the FEV and ergodic variance results, the FEV ΩX (H) may be equivalently

expressed as ΩX (∞) and ΩX (H) relative to ΩX (∞), i.e.

ΩX (H) = ΩX (∞) + [ΩX (H)− ΩX (∞)] (168)

where the elements of [ΩX (H)− ΩX (∞)] are:

[ΩX (H)]ij − [ΩX (∞)]ij = −ΩEX ,ij

(
λiλj

)H
1− λiλj

(169)

Therefore, regardless of the method used to obtain the ergodic variance, the result may
be used with the adjustment [ΩX (H)− ΩX (∞)] to obtain the FEV.
As an aside, the vectorization method to be more effi cient than O (P 6) noted by Doan

(2010) in the case of an AR(P ), if the P × P eigensystem decomposition Φ = V DV −1

and the diagonal form of D are exploited, along with only the first element in vec(ΩEY )
being non-zero, i.e. vec[ΩY ] = [Ωε, 0, . . . , 0]. Specifically, Φ⊗ Φ may be re-expressed as:

Φ⊗ Φ =
(
V DV −1

)
⊗
(
V DV −1

)
= (V ⊗ V ) (D ⊗D)

(
V −1 ⊗ V −1

)
(170)

where the latter result follows from the mixed product property of the Kronecker product,
i.e. (A⊗B) (C ⊗D) = (AC) ⊗ (BD) where A, B, C, and D are generic matrices that
are appropriately conformable. Therefore, with the additional generic matrices E and F :

(A⊗B) (C ⊗D) (E ⊗ F ) = [(AC)⊗ (BD)] (E ⊗ F )

= (ACE)⊗ (BDF ) (171)

The matrix IP 2 − Φ⊗ Φ to be inverted may therefore be written as:

IP 2 − Φ⊗ Φ = IP 2 − (V ⊗ V ) (D ⊗D)
(
V −1 ⊗ V −1

)
= (V ⊗ V ) IP 2

(
V −1 ⊗ V −1

)
− (V ⊗ V ) (D ⊗D)

(
V −1 ⊗ V −1

)
= (V ⊗ V ) (IP 2 −D ⊗D)

(
V −1 ⊗ V −1

)
(172)

29See, for example, Hamilton (1994) p. 265 and Lütkepohl (2006) eq. 2.1.39.
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and therefore:

[IP 2 − Φ⊗ Φ]−1 =
[
(V ⊗ V ) (IP 2 −D ⊗D)

(
V −1 ⊗ V −1

)]−1

=
(
V −1 ⊗ V −1

)−1
(IP 2 −D ⊗D) (V ⊗ V )−1

= (V ⊗ V ) (IP 2 −D ⊗D)−1 (V −1 ⊗ V −1
)

(173)

The vectorization expression therefore becomes:

vec [ΩY (∞)] = (V ⊗ V ) (IP 2 −D ⊗D)−1 (V −1 ⊗ V −1
)
vec (ΩEY ) (174)

With D diagonal, D⊗D and IP 2−D⊗D are diagonal, and so inverting the latter requires
just the reciprocal of 2P elements. Also, only the diagonal elements of V ⊗V are required
for the product (V ⊗ V ) (IP 2 −D ⊗D)−1. Because only the first element in vec(ΩEY )
is non-zero for an AR(P ), only the first row in V −1 ⊗ V −1 needs to be obtained when
calculating (V −1 ⊗ V −1)vec[ΩY ] in the vectorization expression.

D.4 FEV and ergodic variance for the AR(1) and AR(2)

This section contains analytic examples of the closed-form variances for the AR(1) and
AR(2) models. Unlike higher-order AR(P ) models that would need to be calculated
numerically in practice, the AR(1) has very succinct algebraic solutions, and the AR(2)
solutions are relatively succinct. The results for the AR(1) and AR(2) ergodic variances
may be compared to those already available in the literature, as noted below. However,
I’m not aware of closed-form results for the FEVs of the AR(1) and AR(2).

D.4.1 AR(1) example

The AR(1) provides trivial analytic example, given φ1 = λ1 and the residual variances
are Ωε = ΩEY = ΩEX . Therefore all methods produce identical results for the ergodic
variances Ωy (∞) = ΩY (∞) = ΩX (∞), i.e.:

Ωy (∞) =
Ωε

1− φ2
1

(175)

which matches Hamilton (1994) p. 58.
The FEV for the AR(1) is:

Ωy (H) =
Ωε

1− φ2
1

(
1− φ2H

1

)
(176)

and Ωy (H) = ΩY (H) = ΩX (H).

D.4.2 AR(2) example with distinct eigenvalues

The ergodic variance for the AR(2) is well-known, e.g. from Hamilton (1994) p. 58:

Ωy (∞) =
(1− φ2)

(1 + φ2)
[
(1− φ2)2 − φ2

1

]Ωε (177)
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so it serves as a useful analytic example to compare the different calculation methods.
For use further below, I use the substitutions (φ1, φ2) = (λ1 + λ2,−λ1λ2) from equation
7 to express Ωy (∞) in terms of the AR(2) eigenvalues , i.e.:

Ωy (∞) =
1 + λ1λ2

(1− λ1λ2)
[
(1 + λ1λ2)2 − (λ1 + λ2)2]Ωε

=
1 + λ1λ2

(1− λ1λ2)
(
1 + λ2

1λ
2
2 − λ2

1 − λ2
2

)Ωε

=
1 + λ1λ2

(1− λ1λ2)
(
1− λ2

1

) (
1− λ2

2

)Ωε (178)

The calculation of Ωy (∞) using the vectorized expression in equation 167 requires the
inversion of a 4× 4 matrix, i.e.:

vec [ΩY (∞)] = (IP 2 − Φ⊗ Φ)−1 vec [ΩEY ]

=

(
I4 −

[
φ1 φ2

1 0

]
⊗
[
φ1 φ2

1 0

])−1


Ωε

0
0
0



=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−

φ2

1 φ1φ2 φ1φ2 φ2
2

φ1 0 φ2 0
φ1 φ2 0 0
1 0 0 0



−1 

Ωε

0
0
0



=
1

1− φ2
1φ2 − φ2

1 + φ3
2 − φ2

2 − φ2


1− φ2

φ1

φ1

1− φ2

Ωε

=
1

(1 + φ2)
[
(1− φ2)2 − φ2

1

]


1− φ2

φ1

φ1

1− φ2

Ωε (179)

Re-constituting the matrix from vec[ΩY (∞)] gives ΩY (∞), i.e.:

ΩY (∞) =
Ωε

(1 + φ2)
[
(1− φ2)2 − φ2

1

] [ 1− φ2 φ1

φ1 1− φ2

]
(180)

The ergodic variance Ωy (∞) is the top-left element, i.e.:

Ωy (∞) = J ′ΩY (∞) J

=
Ωε

(1 + φ2)
[
(1− φ2)2 − φ2

1

] [ 1 0
] [ 1− φ2 φ1

φ1 1− φ2

] [
1
0

]
=

1− φ2

(1 + φ2)
[
(1− φ2)2 − φ2

1

]Ωε (181)

which matches equation 177.
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The calculation of Ωy (∞) based on the the AR(2) eigensystem uses the AR(2) de-
composition Φ = V ΛV −1 from section A.1 of appendix A, i.e.:[

φ1 φ2

1 0

]
=

[
λ1 λ2

1 1

] [
λ1 0
0 λ2

] [
λ1 λ2

1 1

]−1

(182)

Rather than using ΩEX = V −1
X ΩEY

(
V −1
X

)†
and Ωy (∞) = JVXΩX (H)V †XJ

′ as defined in
the Proposition 8 and its proof, which is based on Φ = VXΛV −1

X and X = ΛP−1V −1Yt,
in this section I will use Ω∗EX = V −1ΩEY (V −1)

† and Ωy (∞) = JV Ω∗X (∞)V †J ′, which is
based on Φ = V ΛV −1 and X∗t = V −1Yt. Hence:

Ω∗EX = V −1ΩEY

(
V −1

)†
=

1

λ1 − λ2

[
1 −λ2

−1 λ1

] [
Ωε 0
0 0

]
1

λ1 − λ2

[
1 −1

−λ2 λ1

]
=

Ωε

|λ1 − λ2|2
[

1 −λ2

−1 λ1

] [
1 0
0 0

] [
1 −1

−λ2 λ1

]
=

Ωε

|λ1 − λ2|2
[

1 −1
−1 1

]
(183)

As an aside, an expression for Ω∗X (∞) may be calculated directly using the vectorized
expression, i.e.:

vec [Ω∗X (∞)]

=
(
IP 2 − Λ⊗ Λ†

)−1
vec
[
Ω∗EX

]
(184)

=

(
I4 −

[
λ1 0
0 λ2

]
⊗
[
λ1 0

0 λ2

])−1
Ωε

|λ1 − λ2|2


1
−1
−1
1



=
Ωε

|λ1 − λ2|2




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−

|λ1|2 0 0 0

0 λ1λ2 0 0

0 0 λ1λ2 0

0 0 0 |λ2|2



−1 

1
−1
−1
1



=
Ωε

|λ1 − λ2|2


1

1−|λ1|2

− 1
1−λ1λ2
− 1

1−λ1λ2
1

1−|λ2|2

 (185)

While this still requires the inversion of a 4 × 4 matrix, the diagonal form of the Kro-
necker product that arises from the diagonal eigenvalue matrix makes the inversion very
straightforward. Re-creating the matrix gives Ω∗X (∞), i.e.:

Ω∗X (∞) =
Ωε

|λ1 − λ2|2

[
1

1−|λ1|2
− 1

1−λ1λ2
− 1

1−λ1λ2
1

1−|λ2|2

]
(186)

Calculating the individual elements of [Ω∗X (∞)]ij = Ω∗EX ,ij1/
(
1− λiλj

)
directly from

equation 52 obviously gives the identical result for Ω∗X (∞), but directly as the elements
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of the 2× 2 matrix, i.e.:

Ω∗X (∞) = Ω∗EX ◦
[

1
1−|λ1|2

1
1−λ1λ2

1
1−λ1λ2

1
1−|λ2|2

]

=
Ωε

|λ1 − λ2|2
[

1 −1
−1 1

]
◦
[

1
1−|λ1|2

1
1−λ1λ2

1
1−λ1λ2

1
1−|λ2|2

]

=
Ωε

|λ1 − λ2|2

[
1

1−|λ1|2
− 1

1−λ1λ2
− 1

1−λ1λ2
1

1−|λ2|2

]
(187)

where “◦”denotes the Hadamard or element-wise product.
Noting that JV = [λ1, λ2] and V †J ′ =

[
λ1, λ2

]′
, the eigensystem calculation of Ωy (∞)

is then:

Ωy (∞) = JV Ω∗X (∞)V †J ′

=
Ωε

|λ1 − λ2|2
[
λ1 λ2

] [ 1
1−|λ1|2

− 1
1−λ1λ2

− 1
1−λ1λ2

1
1−|λ2|2

] [
λ1

λ2

]

=
Ωε

(λ1 − λ2)
(
λ1 − λ2

) ( 1− |λ1|2 |λ2|2 (λ1 − λ2)
(
λ1 − λ2

)(
1− |λ1|2

) (
1− λ1λ2

) (
1− λ1λ2

) (
1− |λ2|2

))

=
1− |λ1|2 |λ2|2(

1− |λ1|2
) (

1− λ1λ2

) (
1− λ1λ2

) (
1− |λ2|2

)Ωε (188)

where |λ1 − λ2|2 = (λ1 − λ2) (λ1 − λ2) = (λ1 − λ2)
(
λ1 − λ2

)
has been used in the third

line.
In the case of real eigenvalues, the numerator is 1−|λ1|2 |λ2|2 = 1−λ2

1λ
2
2 = (1 + λ1λ2)×

(1− λ1λ2), and in the denominator
(
1− λ1λ2

) (
1− λ1λ2

)
= (1− λ1λ2)2. Therefore:

Ωy (∞) =
(1 + λ1λ2) (1− λ1λ2)(

1− λ2
1

)
(1− λ1λ2)2 (1− λ2

2

)Ωε

=
1 + λ1λ2(

1− λ2
1

)
(1− λ1λ2)

(
1− λ2

2

)Ωε (189)

which matches equation 177.
In the case of complex conjugate eigenvalues λ2 = λ1, the numerator is 1−|λ1|2 |λ2|2 =(

1 + |λ1|2
) (

1− |λ1|2
)
, and the denominator is

(
1− |λ1|2

) (
1− λ2

1

) (
1− λ1

2
) (

1− |λ1|2
)
.

Therefore:

Ωy (∞) =

(
1 + |λ1|2

) (
1− |λ1|2

)(
1− |λ1|2

) (
1− λ2

1

) (
1− λ1

2
) (

1− |λ1|2
)Ωε

=
1 + |λ1|2(

1− λ2
1

) (
1− |λ1|2

) (
1− λ1

2
)Ωε

=
1 + λ1λ1(

1− λ2
1

) (
1− λ1λ1

) (
1− λ1

2
)Ωε

=
1 + λ1λ2(

1− λ2
1

)
(1− λ1λ2)

(
1− λ2

2

)Ωε (190)
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which, with λ2 = λ1, matches equation 177.
The FEV for the AR(2) is best expressed relative to Ωy (∞). That is, using the identity

Ω∗X (H) = Ω∗X (∞) + [Ω∗X (H)− Ω∗X (∞)] gives:

JV Ω∗X (H)V †J ′ = JV (Ω∗X (∞) + [Ω∗X (H)− Ω∗X (∞)])V †J ′

= JV Ω∗X (∞)V †J ′ + JV [Ω∗X (H)− Ω∗X (∞)]V †J ′

= Ωy (∞) + JV [Ω∗X (H)− Ω∗X (∞)]V †J ′ (191)

where the individual elements of [Ω∗X (H)− Ω∗X (∞)]ij are calculated as

[Ω∗X (H)− Ω∗X (∞)]ij = −Ω∗EX ,ij

(
λiλj

)H
1− λiλj

(192)

which gives the result:

[Ω∗X (H)− Ω∗X (∞)] = −Ω∗EX ◦

 |λ1|2H

1−|λ1|2
(λ1λ2)

H

1−λ1λ2
(λ1λ2)

H

1−λ1λ2
|λ2|2H

1−|λ2|2


= − Ωε

|λ1 − λ2|2
[

1 −1
−1 1

]
◦

 |λ1|2H

1−|λ1|2
(λ1λ2)

H

1−λ1λ2
(λ1λ2)

H

1−λ1λ2
|λ2|2H

1−|λ2|2


= − Ωε

|λ1 − λ2|2

 |λ1|2H

1−|λ1|2
−(λ1λ2)

H

1−λ1λ2

−(λ1λ2)
H

1−λ1λ2
|λ2|2H

1−|λ2|2

 (193)

Therefore:

JV [Ω∗X (H)− Ω∗X (∞)]V †J ′

= − Ωε

|λ1 − λ2|2
[
λ1 λ2

]  |λ1|2H

1−|λ1|2
−(λ1λ2)

H

1−λ1λ2

−(λ1λ2)
H

1−λ1λ2
|λ2|2H

1−|λ2|2

[ λ1

λ2

]

= − Ωε

|λ1 − λ2|2

((
λ1λ1

)H+1

1− λ1λ1

−
(
λ1λ2

)H+1

1− λ1λ2

−
(
λ1λ2

)H+1

1− λ1λ2

+

(
λ2λ2

)H+1

1− λ2λ2

)
(194)
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E Accommodating repeated eigenvalues

This appendix discusses how repeated eigenvalues may be accommodated when applying
the EAR framework. Section E.1 provides an overview of the eigensystem decomposition
Φ = V ΛV −1 when repeated eigenvalues are included in the AR(P ) specification, and
section E.2 provides the standard algebraic expressions used to obtain V , Λ, and Λh when
general case of repeated eigenvalues. Section E.3 provides the specific example of how a
single pair of repeated eigenvalues is accommodated within the closed-form forecasts and
decompositions for an AR(P ).

E.1 Overview

The core of applying the EAR framework to closed-form AR(P ) forecast/IRF compo-
nents, historical component decomposition, and closed-form FEV and ergodic variances
is the eigensystem decomposition of the AR(P ) companion form, i.e. Φ = V ΛV −1, and
its powers, i.e. Φh = (V ΛV −1)

h
= V ΛhV −1 (or equivalently Φ = VXΛV −1

X and its
powers Φh = VXΛhV −1

X ). For example, the forecast/IRF expression Et [yt+h] = JΦhYt
in section 5.2 leads to the forecast/IRF components Et [yt+h] = [1, . . . , 1] ΛhXt with
Xt = ΛP−1V −1Yt. Analogously, the terms JΦhJ ′ΩεJ

(
Φh
)′
J ′ from the FEV summation

in section 5.4 with Φh = V ΛhV −1, or equivalently Φh = VXΛhV −1
X , leads to closed-form

geometric sums for the elements [ΩX (H)]ij based on the eigenvalues λi and λj.
When an EAR is specified and estimated with repeated eigenvalues, V and Λ need to

be altered from their purely diagonal form that applies in the case of distinct eigenvalues.
In particular, Λ is specified with Jordan blocks associated with the repeated eigenvalues,
and the associated eigenvectors in V are also adjusted using standard algebriac forms that
will be discussed in the following section. The other eigenvalues in Λ remain in purely
diagonal form, and their associated eigenvectors remain in the Vandermonde form already
presented for distinct eigenvalues.
Applying the AR(P ) eigensystem to forecasts/IRFs, historical components, and FEV

and ergodic variances therefore requires taking the powers of the Jordan block/s within
Λ along with powers of the purely diagonal part of the Λ. The diagonal case is very
straightforward, given Λh simply produces scalar powers of the eigenvalues, i.e. Λh =
diag([λ1, . . . , λP ])h = diag

([
λh1 , . . . , λ

h
P

])
, and this result also applies to the purely diagonal

component of Λ. Conversely, powers of Jordan blocks need to account for their (j, j + 1)
elements of 1, which results in upper triangular entries containing functions that are not
simply scalar powers of the eigenvalues. Section E.2 provides the standard algebriac forms
for powers of Jordan blocks.
Once V , Λ, and Λh have been altered to account for the repeated eigenvalue specifica-

tion, they are used in the expressions for forecasts/IRFs, historical components, and FEV
and ergodic variances. The end-result is that their components or elements associated
with distinct eigenvalues will remain as for the purely diagonal cases presented in sec-
tion 5, while the repeated eigenvalues will produce components with additional functional
forms. These additional functions are illustrated in section E.3 for the forecast/IRF func-
tion in the case for a single pair of repeated eigenvalues, which applies to the empirical
examples in section 6.
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E.2 General repeated eigenvalues

With a single set of r repeated eigenvalues, the first r columns of V and the top-left r× r
submatrix of Λ would be replaced with:30

Vr =



λP−1
1

(
P−1

1

)
λP−2

1 · · ·
(
P−1
r−1

)
λP−r1

λP−2
1

(
P−2

1

)
λP−3

1 · · ·
(
P−2
r−1

)
λP−r−1

1
...

... · · · ...
λ2

1 2λ1 · · · 0
λ1 1 · · · 0
1 0 · · · 0


; Λr =


λ1 1 0

λ1
. . .
. . . 1

0 λ1

 (195)

where the binomial coeffi cients for generic n and k, which are integers with n ≥ k, are
defined as: (

n

k

)
=

n!

(n− k)!k!
(196)

with “!”the factorial operator, e.g. n! = n× (n− 1)× . . .× 2× 1.
The eigenvalue matrix Λ is block diagonal, i.e.:

Λ = diag ([Λr, λr+1, . . . , λP ]) (197)

where λr+1, . . . , λP are the distinct eigenvalues. Λh = diag
([

Λh
r , λ

h
3 , . . . , λ

h
P

])
will therefore

also be block diagonal with Λh
r as follows:

31

Λh
r =


λh1

(
h
1

)
λh−1

1

(
h
2

)
λh−2

1 · · ·
(
h
r−1

)
λh−r+1

1

0 λh1
(
h
1

)
λh−1

1 · · ·
(
h
r−1

)
λh−r+1

1

0 0
... · · · ...

...
...

... · · ·
(
h
1

)
λh−1

1

0 0 0 · · · λh1

 (198)

The component of Et [yt+h] associated with the eigenvalues λ1, . . . , λr, which I will
denote as Et [yt+h|λ1, . . . , λr], is:

Et [yt+h|λ1, . . . , λr] = JVrΛ
h
r

 [V −1Yt]1
...

[V −1Yt]r

 (199)

and the component of Et [yt+h] associated with the distinct eigenvalues is:

Et [yt+h|λr+1, . . . , λP ] =
[
λhr+1, . . . , λ

h
P

]
Xt

=

P∑
k=r+1

λkXk,t (200)

The case of two or more sets of repeated eigenvalues combines the forms already given
for the single set of repeated eigenvalues. For example, with a set of r repeated eigenvalues

30See Wilkinson (1965) pp. 14-15.
31See Hamilton (1994) p. 19.
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equal to λ1 and a set of s repeated eigenvalues equal to λ2, the first r + s columns of V
and the top-left (r + s)× (r + s) submatrix of Λ would respectively be:

Vr+s = [Vr, Vs] ; Λr+s = diag ([Λr,Λs]) (201)

where Vr is the P × r matrix in equation 195, Vs is the analogous P × s matrix using
λ2, Λr is the r × r matrix in equation 195, and Λs is the analogous s × s matrix using
λ2. The eigenvalue matrix is therefore Λ =diag([Λr,Λs, λr+s+1, . . . , λP ]), its powers are
Λh = Λ = diag

([
Λh
r ,Λ

h
s , λ

h
r+s+1, . . . , λ

h
P

])
, Λh

r is given in equation 198, and Λh
s is the

analogous result using λ2. The component of Et [yt+h] associated with the eigenvalues
λ1, . . . , λr+s is:

Et [yt+h|λ1, . . . , λr+s] = JVr+sΛ
h
r+s

 [V −1Yt]1
...

[V −1Yt]r+s

 (202)

and the component of Et [yt+h] associated with the distinct eigenvalues is:

Et [yt+h|λr+s+1, . . . , λP ] =
[
λhr+s+1, . . . , λ

h
P

]
Xt

=
P∑

k=r+s+1

λkXk,t (203)

E.3 AR(P ) containing a single pair of repeated eigenvalues

Using equation 195, the case of a single pair of repeated eigenvalues would respectively
replace the first two columns of V and the top-left 2× 2 submatrix of Λ with:

V2 =



λP−1
1 (P − 1)λP−2

1

λP−2
1 (P − 2)λP−3

1
...

...
λ2

1 2λ1

λ1 1
1 0


; Λ2 =

[
λ1 1
0 λ1

]
(204)

The eigenvalue matrix Λ will now be block diagonal, i.e. Λ = diag([Λ2, λ3, . . . , λP ]),
where λ3, . . . , λP are distinct eigenvalues. Λh will therefore also be block diagonal, i.e.:

Λh = diag
([

Λh
2 , λ

h
3 , . . . , λ

h
P

])
(205)

with Λh
2 as follows:

Λh
2 =

[
λh1 hλh−1

1

0 λh1

]
(206)

Following the method for the proof of Proposition 4, the forecast/IRF for Et [yt+h] is:

Et [yt+h] = J
(
V ΛV −1

)h
Yt

= JV ΛhV −1Yt

= JV ΛhΛ1−PΛP−1V −1Yt

= JV Λh+1−PXt (207)
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where Xt = ΛP−1V −1Yt.
The distinct eigenvalues λh3 , . . . , λ

h
P contribute to Et [yt+h] as in Proposition 4, i.e.:

Et [yt+h|λ3, . . . , λP ] =
[
λh3 , . . . , λ

h
P

]
Xt

=

P∑
k=3

λkXk,t (208)

The repeated eigenvalues λ1 = λ2 contribute to Et [yt+h] as:

Et [yt+h|λ1, λ2] = JV2Λh+1−P
2

[
X1,t

X2,t

]
=

[
λP−1

1 (P − 1)λP−2
1

] [ λh+1−P
1 hλh−P1

0 λh+1−P
1

] [
X1,t

X2,t

]
=

[
λh1 (h+ P − 1)λh−1

1

] [ X1,t

X2,t

]
= λh1X1,t + (h+ P − 1)λh−1

1 X2,t (209)
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