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Abstract

This paper examines the pricing of a firm’s carbon risk in the corporate bond
market. Contrary to the “carbon risk premium” hypothesis, bonds of more carbon-
intensive firms earn significantly lower returns. This effect cannot be explained by
a comprehensive list of bond characteristics and exposure to known risk factors.
Investigating sources of the low carbon alpha, we find the underperformance of
bonds issued by carbon-intensive firms cannot be fully explained by divestment
from institutional investors. Instead, our evidence is most consistent with investor
underreaction to the predictability of carbon intensity for firm cash-flow news,
creditworthiness, and environmental incidents.
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1 Introduction

Scientists predict a rise in average global temperatures by the end of this century, and many

policy makers warn about the potentially dramatic damage that climate change could inflict

on the global economy (Hoegh-Guldberg et al., 2018). In the recent decade, consensus has

emerged that more stringent governmental regulations and law enforcement are needed to

mitigate the potentially catastrophic consequences of climate change. As accumulations of

greenhouse gases (GHG) in the earth’s atmosphere mostly cause climate change, any regulation

should be targeted at significantly curbing firms’ carbon emissions (e.g., via a carbon tax or a

cap-and-trade program).

Climate change mitigation policies likely produce heterogeneous effects across firms in the

economy. Effects are likely most impactful for carbon-intensive firms, as regulations that limit

carbon emissions can lead to stranded assets or a large increase in operating costs for carbon-

intensive firms. In addition, carbon-intensive firms may experience higher financing costs if

banks reduce lending to and institutional investors shun from such firms, due to climate-related

capital requirements and general trends towards sustainable investing in financial markets

(Delis, De Greiff, and Ongena, 2019; Krueger, Sautner, and Starks, 2020).1 Furthermore,

more stringent emission regulations are likely to be proposed and implemented as the global

climate worsens, leading to deteriorating fundamental values of carbon-intensive firms just

when climate change matters most to investors’ welfare. These conjectures about climate

policies naturally lead to the prediction that securities issued by carbon-intensive firms are

riskier because they tend to lose value in states of the world where investors dislike and have

a higher marginal utility of consumption. As a result, risk-based asset pricing theories predict

that investors should demand higher expected returns for holding securities issued by carbon-

intensive firms as compensation for higher exposure to climate policy risks (the “carbon risk

premium” hypothesis).

1For example, Larry Fink, CEO of BlackRock, said in his recent annual letter to CEOs that the company is
considering “exiting investments that present a high sustainability-related risk, such as thermal coal producers”
(Source: https://www.blackrock.com/corporate/investor-relations/larry-fink-ceo-letter). Bank
of England Governor Andrew Bailey said the British central bank would look into introducing climate change
considerations into its corporate bond buying decisions (Source: https://www.bankofengland.co.uk/news/

2020/july/statement-on-banks-commitment-to-combatting-climate-change).
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In this study, we examine the pricing of carbon risk in the U.S. corporate bond market.

Despite the proliferation of academic studies on the pricing of climate risk in the equity market

(Bansal, Ochoa, and Kiku, 2016; Hong, Li, and Xu, 2019; Bolton and Kacperczyk, 2021; Engle

et al., 2020), few studies are devoted to understanding the role of firms’ carbon risk in the

expected returns of corporate bonds. We focus on corporate bonds for several reasons. First,

unlike stocks, corporate bonds have limited upside potential but are significantly exposed to

downside risks (Hong and Sraer, 2013; Bai, Bali, and Wen, 2019). Since future climate policies

and regulations mainly constitute a downside risk to carbon-intensive firms (Ilhan, Sautner,

and Vilkov, 2021; Hoepner et al., 2021), the impacts of uncertain climate policies likely matter

more for investors in the bond market than equity market, especially for high-yield bonds.

Second, the clientele of corporate bonds in the United States are predominantly institutional

investors, who are sophisticated and likely take carbon risks into account when investing in

carbon-intensive assets.2 Third, corporate bonds differ along important dimensions, such as

credit risks and maturities. The heterogeneity in various bond characteristics allows us to

shed more light on the underlying channels of the (mis)pricing of carbon risk.3 Fourth, debt

financing forms a significant portion of firms’ capital structures, underscoring the need to study

how carbon emissions affect a firm’s cost of debt financing.4 Last, but not the least, the sheer

size of and the possibility of fragility in the fast-growing corporate bond market (Goldstein,

Jiang, and Ng, 2017) suggest our research question is an important one with profound policy

implications.5,6 Thus, enhancing our understanding of how carbon emissions are related to

expected returns in corporate bonds is pivotal.

2According to flow of fund data released by the Federal Reserve Board from 1986 to 2019, approximately
78% of corporate bonds were held by institutional investors, including insurance companies, mutual funds, and
pension funds. The participation rate of individual investors in the corporate bond market is very low. A recent
survey by Krueger, Sautner, and Starks (2020) found that institutional investors indeed consider climate risks
to be important for their investment portfolios.

3For example, if investors care about carbon risks, the pricing effect should be more pronounced among
bonds with higher credit risk or longer maturities, since climate risks should mainly materialize in the long run.

4Graham, Leary, and Roberts (2015) report that the average debt-to-assets ratio for public companies was
as high as 35% in 2010.

5The outstanding amount of corporate bonds issued by non-financial corporations was $5.8 trillion at the
end of 2019 (see Table L.213 in the Federal Reserve Board Z.1 flow of funds).

6Indeed, regulators and policy makers worldwide have expressed concerns about the extent to which climate
risks could affect financial stability. Most notably, Mark Carney, the former head of the Bank of England,
recently linked these risks to financial stability (Carney, 2015). A coalition of 39 central banks, representing
about half the global economy, including the central banks of England, China, Canada, Japan, and the European
Union (but not the United States), has convened a working group to study the effects of climate change on
financial markets.
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We rely on firms’ carbon emissions data from Trucost and corporate bond pricing data from

the enhanced version of the Trade Reporting and Compliance Engine (TRACE). We examine

the relation between a firm’s carbon emissions intensity (CEI) and the expected return on its

corporate bonds. Following existing studies (Ilhan, Sautner, and Vilkov, 2021; In, Park, and

Monk, 2019; Pedersen, Fitzgibbons, and Pomorski, 2021) and industry standards (e.g., MSCI

Low Carbon Indexes), we construct our measure of CEI as carbon dioxide (CO2) emissions

in units of tons scaled by a firm’s total revenues (in $millions).7 Following the portfolio sorts

method in Fama and French (1992), we form quintile portfolios of corporate bonds based on

firm-level (scope 1) CEI in June of each year t for firms with their fiscal year ending in year t−1.

Portfolio returns are calculated from July of year t to June of year t+1 and rebalanced annually.

Since the level of carbon intensity varies intrinsically across industries, we form value-weighted

quintile portfolios within each of the 12 Fama-French industries to control for the industry

effect and to calculate the average portfolio returns across industries. We find that the bonds

of high CEI firms are riskier on average than those of low CEI firms, as indicated by a higher

bond market beta, higher downside risk, higher illiquidity, and lower credit ratings. However,

the bonds of high CEI firms significantly underperform the bonds of low CEI firms over the

period from July 2006 to June 2019. This finding directly contradicts the carbon risk premium

hypothesis as predicted by risk-based asset pricing models. This low carbon alpha effect is

economically significant: corporate bonds in the lowest-CEI quintile generate 1.7% (t-stat. =

2.62) per annum higher returns than bonds in the highest-CEI quintile.

We further confirm that the return predictability of CEI is robust to using various factor

models to adjust for bonds’ risk exposure. We rely on three unique factor models in our

main analyses: the five-factor model of Pastor and Stambaugh (2003), the four-factor bond

market model of Bai, Bali, and Wen (2019), and the nine-factor model combining the stock and

bond market factors. Regardless of the factor model used, we find that the low-CEI portfolio

7According to the Greenhouse Gas Protocol accounting and reporting standard, carbon emissions from a
firm’s operations and economic activities are typically grouped into three different categories: direct emissions
from sources that are owned or controlled by the firm (scope 1); indirect emissions from the generation of
electricity, heat or steam purchased by the firm from a utility provider (scope 2); and other indirect emissions
from the production of purchased materials, product use, waste disposal, outsourced activities, etc. (scope 3). In
our main analyses, we focus on scope 1 carbon emissions, the disclosure requirements for which are stricter and
for which relevant data have been more systematically reported and accurately measured. Scope 3 emissions,
on the other hand, are rarely reported by companies, and are at best noisily estimated and inconsistent across
different data providers (Busch et al., 2018).
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significantly outperforms the high-CEI bond portfolio, with a monthly nine-factor alpha ranging

from 0.13% to 0.16%.

The return predictability of CEI persists in Fama-MacBeth regressions when we include

a comprehensive list of bond characteristics and systematic risk measures. The bond

characteristics we include are the bond market beta, downside risk as proxied for by 5%

value-at-risk (VaR), bond-level illiquidity, credit ratings, time-to-maturity, bond size, and

the one-month-lagged bond return. The systematic risk proxies include the term beta, the

default beta (Gebhardt, Hvidkjaer, and Swaminathan, 2005), macroeconomic uncertainty beta

(Bali, Subrahmanyam, and Wen, 2021b), and climate change news beta (Huynh and Xia,

2021). Similar to the portfolio sorting results, the cross-sectional relation between future

bond returns and firms’ carbon emissions intensity is negative and highly significant. The

multivariate regression results suggest that the CEI measure contains distinct, significant

predictive information beyond bond size, maturity, rating, liquidity, market risk, default risk,

and climate risk. The results further imply that CEI is a strong and robust predictor of future

bond returns.

We conduct a battery of robustness tests to investigate the return predictability of carbon

emissions intensity. First, our results remain similar when we construct our CEI measure based

on the scope 2 emissions, as well as scope 1 and scope 2 emissions combined. Second, we find

that the most carbon-intensive industries do not drive the low carbon alpha. When we exclude

the most carbon-intensive industries including the energy, chemicals, and utilities industries,

the return spreads between low- and high-CEI bonds remain economically and statistically

significant. Third, we perform portfolio analysis at the firm level to control for the impact of

multiple bonds issued by the same firm. The results are robust to forming the value-weighted

average bond returns across the same firm or to choosing one representative bond of the largest

size or most liquid for each firm. Fourth, we orthogonalize the firm-level carbon intensity

measure with respect to several firm characteristics and find the residual CEI remains as a

significant bond return predictor. Last, the return spread between low- and high-CEI bonds

remains significant using alternative factor models, for different subperiods, and is not driven

by the period containing the global financial crisis (September 2008 to December 2009).

Our finding of a low carbon alpha, combined with the evidence that bonds of carbon-
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intensive firms are riskier, suggests that the data does not support the “carbon risk premium”

hypothesis. Although risk-based theories predict that carbon intensity should be positively

related to expected bond returns, the empirical relation between the two could go in either

direction, as predicted by recent theories. Pastor, Stambaugh, and Taylor (2020) show that

green assets could perform better than brown assets if investors’ environmental, social, and

governance (ESG) concerns unexpectedly strengthen. Excess demand from ESG-conscious

investors could boost the realized performance of green assets, while hurting that of brown

assets. If one computes average returns over a sample period when ESG concerns consistently

strengthened more than investors expected, green assets could outperform brown assets.8 We

test this “investor preference” hypothesis by examining whether a firm’s carbon emissions

intensity is predictive of subsequent changes in institutional ownership of its corporate bonds.

We find that institutional investors collectively divest from bonds issued by carbon-intensive

firms over our sample period. However, the predictive power of carbon intensity for future

bond returns remains significant after controlling for the contemporaneous and lagged changes

in bonds’ institutional ownership. This suggests that investor divestment from carbon-intensive

assets cannot fully explain the outperformance of bonds from low carbon intensity firms.

Pedersen et al. (2021) propose another explanation for the outperformance of low carbon

assets. Their model predicts that assets with a higher ESG rating could earn higher returns

if better ESG performance is an indication of strong firm fundamentals, and the market

underreacts to this predictability of fundamentals (the “investor underreaction” hypothesis).

We conduct several tests for this hypothesis. First, the investor underreaction hypothesis

implies that the return predictability should be larger among bonds with poorer information

environments and in periods with low investor attention to climate change issues. Consistent

with this hypothesis, we find the low carbon alphas are indeed more pronounced for bonds with

higher information asymmetry and in periods when investor attention to climate change topics

8The idea that changing investor composition over a sustained period of time can affect asset prices is first
proposed and tested by Gompers and Metrick (2001), in which they argue the disappearing size premium after
1980s can be explained by the rise of institutional investing.
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is low.9

Second, we directly test whether CEI predicts future firm fundamentals. Our results

show that firms with lower carbon intensity are associated with higher future earnings and

revenue growth, but investors fail to fully incorporate the information they glean from firms’

emission intensity when forming their expectations about future earnings. As a result, CEI

also negatively predicts earnings announcement returns. In further support of this channel, we

find firms with low (high) carbon intensity subsequently experience improved (deteriorating)

creditworthiness, as measured by bond credit ratings and the O-score (Ohlson, 1980). Using

ESG incidents data from RepRisk, we also show that part of reason why carbon-intensive firms

experience lower cash-flow news is that environmental risks are persistent, that is, carbon-

intensive firms are more likely to face negative environment incidents than carbon-efficient firms.

Collectively, these results are broadly consistent with the “investor underreaction” hypothesis,

which posits that risk associated with carbon emissions is underpriced in the corporate bond

market.

The rest of this paper proceeds as follows. Section 2 reviews the literature and articulates

different hypotheses and associated empirical predictions as motivated by recent theories.

Section 3 describes the data and defines the variables used in our empirical analyses. Section 4

presents the main results for the relation between carbon emissions intensity and cross-sectional

bond returns. Section 5 investigates the sources of the low carbon alpha in corporate bonds.

Section 6 concludes the paper.

2 Literature Review and Hypotheses Development

In subsection 2.1, we provide a brief review of related literature and the contribution of our

study to the literature. In subsection 2.2, we develop alternative hypotheses as motivated by

recent theories linking firm carbon risk to its expected returns.

9We assume that bonds with smaller issuance size, non-investment-grade bonds, longer-maturity bonds, and
bonds that are more illiquid have higher information asymmetry. Following Choi, Gao, and Jiang (2020), we
use Google search volume index on the topics of “climate change” or “global warming” as proxies for investor
attention. We also conjecture that investors become more aware of climate policy risks after Paris agreement
was adopted in December 2015 (Ilhan, Sautner, and Vilkov, 2021).
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2.1 Related literature and contribution

Our study contributes to several strands of the literature. First, our paper adds to a fast-growing

climate finance literature that studies whether financial markets can anticipate and efficiently

discount risks associated with climate change (Giglio, Kelly, and Stroebel, 2021). Studying this

topic is important because of the key role that financial markets play in alleviating this disaster:

properly pricing climate risks today not only reduces the possibility of wealth transfers between

uninformed and sophisticated agents but also reduces the likelihood of extreme price movements

in the future. Evidence to date is still mixed.10 Closely related to our paper, Ilhan, Sautner,

and Vilkov (2021) find that uncertainty about climate policy, as proxied by carbon intensity, is

priced in the options market.11 Bolton and Kacperczyk (2021) document that stocks of firms

with higher carbon emissions earn higher returns, although In, Park, and Monk (2019) and

Cheema-Fox et al. (2019) find the opposite evidence: carbon-efficient firms are more profitable

and earn higher returns. Whether return predictability patterns in equities extend to bonds is

an open question, given the markedly different investing clienteles across equities and bonds.

Our study attempts to find some common ground among this mixed evidence by investi-

gating how the corporate bond market prices carbon risk. A recent paper by Seltzer, Starks,

and Zhu (2020) examines how state-level environmental regulations affect the credit ratings

and yield spreads of corporate bonds. Our paper differs from theirs, however, as we focus

on firm-level carbon emissions and investigate the pricing of carbon risk through the lens of

expected corporate bond returns. Cao et al. (2021) investigate the trading behavior of mutual

funds and insurance companies on firms with different carbon emission levels and show that

these investors are more likely to sell corporate bonds in herds if the bonds’ issuing firms have

higher carbon emissions. Different from their study, we focus on the pricing implications of

10Bansal, Ochoa, and Kiku (2016) find that climate change risk, as proxied for by temperature rise, negatively
affects stock market valuation, implying that markets do price climate change risk. In contrast, Hong, Li, and
Xu (2019) show that global stock markets do not anticipate the effects of worsening droughts on agricultural
firms. In the real estate market, Bernstein, Gustafson, and Lewis (2019) show that home buyers take into
account the negative effect of sea-level rise on real estate prices in coastal areas, although Murfin and Spiegel
(2020) find no evidence of significant valuation effects. Painter (2020) documents that the municipal bond
market prices climate change risks, especially for long-term bonds issued by counties more likely to be affected
by sea-level rise. Sautner, Van Lent, Vilkov, and Zhang (2021) construct firm-level climate change exposure
using earnings call data and find an unconditional climate risk premium close to zero.

11Specifically, they document that the cost of option protection against downside tail risks is larger for firms
within carbon-intense industries. We differ from their paper by using firm-level carbon intensity measure and
performing within-industry analysis.
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carbon risks in the corporate bond market and disentangle the alternative hypotheses linking

carbon risks to the expected bond returns.

Our paper is also related to the growing literature on the impact of a firm’s ESG performance

on its cost of capital. Existing studies report mixed evidence. Some studies show that low-ESG

assets earn higher expected returns than do high-ESG assets across various contexts, such as

the outperformance of “sin” stocks (Hong and Kacperczyk, 2009), higher implied cost capital

for firms that derive substantial revenues from the sale of coal or oil (Chava, 2014), and higher

expected returns for firms with intense toxic emission (Hsu, Li, and Tsou, 2020). Other studies

uncover opposite results, based on different measures of ESG metrics. Firms’ stocks perform

better if the firms themselves are better-governed (Gompers, Ishii, and Metrick, 2003), have

higher employee satisfaction (Edmans, 2011), or higher carbon efficiency (In, Park, and Monk,

2019; Cheema-Fox et al. (2019)). An emerging field examines the pricing of green bonds issued

to finance environment-friendly projects.12 Our study differs from that line of research by

examining the impact of carbon emissions on the much larger corporate bond market.

Lastly, this study also contributes to our understanding of the cross-sectional determinants

of corporate bond returns. Despite the multitude of stock and firm characteristics to explain the

cross section of stock returns, far fewer studies are devoted to explaining the expected returns

of corporate bonds.13 Recent studies examine a few corporate bond characteristics related

to default, term, and macroeconomic uncertainty betas (Fama and French, 1993; Gebhardt,

Hvidkjaer, and Swaminathan, 2005; Bali, Subrahmanyam, and Wen, 2021b), liquidity risk (Lin,

Wang, and Wu, 2011), bond momentum (Jostova et al. (2013)), downside risk and short-term

reversal (Bai, Bali, and Wen, 2019), and long-term reversal (Bali, Subrahmanyam, and Wen,

2021a), all of which exhibit significant explanatory power for future bond returns. Our study

examines whether firms’ carbon emissions intensity (an increasingly important risk factor) is

an incrementally important determinant of corporate bond returns.

12See, for example, Flammer (2020) and Larcker and Watts (2020) for the evidence on whether green bonds
are priced at premium or not.

13This gap in the literature is partly explained by the dearth of high-quality corporate bond data and the
complex features of corporate bonds, such as optionality, seniority, changing maturity, and risk exposure to a
number of financial and macroeconomic factors.
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2.2 Hypotheses development

In this subsection, we develop different hypotheses based on recent theoretical works linking

firm environmental performance to asset prices and expected returns (Pastor, Stambaugh, and

Taylor, 2020; Pedersen, Fitzgibbons, and Pomorski, 2021).

H1: Carbon risk premium hypothesis: Carbon risk should be positively priced

in the cross section of corporate bond returns if carbon intensive firms are subject

to more stringent climate policies in future and such policies are more likely to be

proposed and implemented when global climate worsens unexpectedly.

Our first hypothesis, H1, is naturally predicted by asset pricing theories when carbon-

intensive firms likely lose value in states of the world where investors dislike and have a

higher marginal utility of consumption. Alternatively, theories based on investor non-pecuniary

preferences for ESG characteristics and limited risk-sharing due to divestment may also predict

a positive relation between carbon intensity and expected returns. Pastor et al. (2020) present a

model of investing based on ESG criteria and show that green (brown) assets produce negative

(positive) alphas.14 In their model, the lower expected returns from green assets stem from two

sources: investors’ tastes for green holdings and such stocks’ ability to hedge against climate

risk. Pedersen et al. (2021) propose a theory in which a positive carbon risk premium arises

because of exclusionary screening by institutional investors with an ESG mandate. To the extent

that some investors shun companies with high carbon emissions, risk sharing would be limited,

and idiosyncratic risk could be priced (Merton, 1987). If the extent of such divestment is high,

one would expect to find a return premium for bonds issued by carbon intensive companies.

H2: Investor preference hypothesis: Corporate bonds for firms with a low

(high) carbon emissions intensity perform better (worse) than expected if ESG

concerns unexpectedly strengthen.

Our second hypothesis, H2, is motivated by the theoretical work of Pastor, Stambaugh,

and Taylor (2020), who predict that green assets could outperform brown ones when there

14This finding is especially true when risk aversion is low and the average ESG preference is strong.
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is an unexpected shift in customers’ tastes for green products and investors’ tastes for green

holdings. To be clear, their model predicts that if ESG policies make a firm a safer investment,

or if investors non-pecuniarly value ESG, a basic general equilibrium argument means that

high-ESG firms should obtain lower returns than their peers (this is the prediction of H1).

However, if investors’ non-pecuniary benefit rises or ESG concerns strengthen unexpectedly

over a given period, green assets can outperform brown assets over that period, despite having

lower expected returns in equilibrium (H2).15 This hypothesis is plausible as evidenced by the

sharp rise in the number of institutional investors pledged to divest from fossil fuel companies.16

H3: Investor underreaction hypothesis: Corporate bonds of low carbon in-

tensity firms could earn higher returns if being carbon efficient is an indication

of strong firm fundamentals, and the market underreacts to this predictability of

fundamentals.

Our third hypothesis, H3, is motivated by Pedersen et al. (2021), who argue that securities

with a high-ESG score could earn higher future returns when investors do not take into account

the predictability of ESG ratings for future firm profitability. The key ingredients in their

model is that the ESG score plays two roles: (1) providing information about firm fundamentals

and (2) affecting investor preferences. Companies that manage relevant ESG issues well tend

to quickly adapt to changing environmental and social trends, use resources efficiently, have

engaged (and, therefore, productive) employees, and can face lower risks of regulatory fines or

reputational damage.17 This positive relation between ESG ratings and firm profitability can

lead to a low carbon alpha if the market underreacts to this predictability of fundamentals.

The underreaction hypothesis is plausible considering that carbon risk is not fully integrated

by most investors and credit analysts during our sample period.18

15Pastor, Stambaugh, and Taylor (2021) provide evidence that the outperformance of green stocks can be
attributable to unexpectedly strong increases in environmental concerns in the recent period.

16As of 2021, over 1,300 institutions (e.g., pension funds, investment funds and university endowments)
representing approximately US$ 14.5 trillion have publicly pledged to reduce their investments in the fossil fuel
industry. Source: https://gofossilfree.org/divestment/commitments/

17For example, Bloom et al. (2010) document that better managed firms are significantly less energy intensive
and more productive.

18Only recently, Fitch launched the ESG Relevance Scores to show how ESG factors impact individual
credit ratings. https://www.ipe.com/fitch-launches-esg-credit-rating-relevance-scores/10028894.

article
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3 Data and Variable Definitions

Our study utilizes several datasets including (1) firm-level carbon emissions data, (2) corporate

bond pricing data, and (3) data on institutional holdings of corporate bonds. We provide

detailed descriptions on these datasets below.

3.1 Carbon emissions data

We obtain carbon emissions data from S&P Global Trucost. Trucost’s firm-level carbon

emissions data follow the Greenhouse Gas Protocol, which sets the standards for measuring

carbon emissions. The Greenhouse Gas Protocol distinguishes between three different sources

of emissions: scope 1 emissions, which cover direct emissions from establishments that are

owned or controlled by the firm; these include all emissions from fossil fuel used in production.

Scope 2 emissions originate from purchased heat, steam, and electricity the company consumes.

Scope 3 emissions are generated by the firm’s operations and production but originate from

sources not owned or controlled by the company.19 Trucost reports carbon emissions in units

of tons of CO2 equivalents (a standard unit for measuring a firm’s carbon footprint) emitted in

a year across all three scopes. As shown by Busch et al. (2018), reported scope 1 and scope 2

emissions data are highly consistent across different data providers.20 Trucost also reports the

CEI for all three scopes, defined as the firm-level greenhouse gas emission in CO2 equivalents,

divided by the total revenue of the firm in millions of U.S. dollars. The sample of carbon

emissions data starts from 2005.

To construct our sample, we begin with the universe of all firms in Trucost with a fiscal year

ending between calendar years 2005 and 2017. Since the main firm identifier in Trucost is ISIN,

we first convert ISIN to GVKEY using S&P Capital IQ and then obtain the primary PERMNO

from the Compustat/Center for Research in Security Prices (CRSP) Merged database. Panel A

19Trucost collects firm-level emissions data from various sources including company reports, environmental
reports (CSR/ESG reports, the Carbon Disclosure Project, Environmental Protection Agency filings), and
data from company websites. If a firm does not disclose emissions data, Trucost uses an input-output model
to estimate the firm’s carbon emissions. Following Bolton and Kacperczyk (2021), we use both actual and
estimated emissions data in our analyses.

20The average correlations for the scope 1 and scope 2 data are 0.99 and 0.98, respectively, across the five
providers (CDP, Trucost, MSCI, Sustainalytics, and Thomson Reuters). However, only two data providers,
Trucost and ISS ESG, estimate scope 3 emissions.
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of Fig. 1 shows the mean carbon emissions intensity (scopes 1, 2, and 3) for the Fama-French 12

industries from 2005 to 2017. The top-three industries with the highest scope 1 carbon emissions

intensity are Utilities, Energy, and Chemicals, respectively.21 Panel B of Fig. 1 presents the

average CEI over time and reports a declining trend for scope 1 emissions. This result indicates

a gradual improvement in carbon efficiency in the average firm’s production process.

Fig. 2 plots the cross- and within-industry variations in carbon emissions intensity over time.

Panel A of Fig. 2 reports significant cross-industry variation, especially for scope 1 emissions.

The standard deviation of cross-industry CEI declines over time but is of large magnitude

compared to the average CEI as shown in panel B of Fig. 1. More importantly, our CEI

measure exhibits significant cross-sectional variation even within the same industry, as shown

in panel B of Fig. 2. Overall, Fig. 2 shows that carbon emissions intensity intrinsically varies

across industries, and, as a result, we control for the industry effect in our empirical analyses.

3.1.1 The persistence of carbon emissions intensity

To test whether investors ex-ante require higher expected returns for bonds more exposed to

carbon risk, they first need to predict a firm’s future carbon emissions reasonably well. Because

we use past CEI in asset pricing tests, a natural question is whether historical CEI is a good

proxy for the “expected” future carbon intensity. Table A.1 of the Online Appendix investigates

this issue by presenting the average year-to-year transition matrix for portfolios sorted on past

CEI. Specifically, Panel A of Table A.1 presents the average probability that a firm in decile i

(defined by the rows) in one year will be in decile j (defined by the columns) in the subsequent

year. If CEI is not persistent at all, then all the probabilities should be approximately 10%,

since a high or a low CEI value in one year should say nothing about the CEI values in the

following year. Instead, all the top-left to bottom-right diagonal elements of the transition

matrix exceed 10%, illustrating that a firm’s carbon emissions intensity is highly persistent.

Of greater importance, this persistence is especially strong for the extreme portfolios. Panel

A of Table A.1 shows that for the one-year-ahead persistence of CEI, firms in decile 1 (decile

10) have a 94.13% (80.30%) chance of appearing in the same decile next year. Similarly, Panel

21In Section 4.3, we examine whether our results remain intact after we exclude the top three most carbon-
intensive industries. We find similar results showing that the carbon premium applies to a broader category of
industries, not just carbon-intensive industries.
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B shows that for the two-year-ahead persistence of CEI, firms in decile 1 (decile 10) have a

89.47% (81.41%) chance of appearing in the same decile the next two years. In Panels C to

E, similar results are obtained using a three- to five-year gap between the lagged and lead

carbon emissions intensity. Even after a five-year gap is established between the lagged and

lead CEI, firms in decile 1 (decile 10) have a 79.52% (81.32%) chance of appearing in the same

decile. Overall, Table A.1 indicates that a firm’s past CEI is a very informative predictor for

its expected carbon intensity in future.

3.2 Corporate bond data and bond returns

We compile corporate bond pricing data from the enhanced version of the Trade Reporting

and Compliance Engine (TRACE) for the sample period from 2006 to 2019. The TRACE

dataset offers the best-quality corporate bond transactions, with intraday observations on price,

trading volume, and buy and sell indicators. We then merge corporate bond pricing data with

the Mergent Fixed Income Securities database to obtain bond characteristics, such as offering

amount, offering date, maturity date, coupon rate, coupon type, interest payment frequency,

bond type, bond rating, bond option features, and issuer information.

For bond pricing data, we adopt the filtering criteria proposed by Bai, Bali, and Wen (2019).

Specifically, we remove bonds that (a) are not listed or traded in the U.S. public market or

are not issued by U.S. companies; (b) are structured notes, mortgage-backed, asset-backed,

agency-backed, or equity-linked; (c) are convertible; (d) trade under $5 or above $1,000; (e)

have floating coupon rates; and (f) have less than one year to maturity. For intraday data,

we also eliminate bond transactions that (g) are labeled as when-issued, are locked-in, or have

special sales conditions; (h) are canceled, and (i) have a trading volume less than $10,000. From

the original intraday transaction records, we first calculate the daily clean price as the trading

volume-weighted average of intraday prices to minimize the effect of bid-ask spreads in prices,

following Bessembinder et al. (2009).22

22This approach puts more weights on the trades with low transaction costs and should more accurately
reflect the bond prices.
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The corporate bond return in month t is computed as

ri,t =
Pi,t + AIi,t + Couponi,t

Pi,t−1 + AIi,t−1

− 1, (1)

where Pi,t is the end-of-month transaction price, AIi,t is accrued interest on the same day of

bond prices, and Couponi,t is the coupon payment in month t, if any. The end-of-month price

refers to the last daily observation if there are multiple trading records in the last 10 days of a

given month.23 Ri,t denotes bond i’s excess return, Ri,t = ri,t − rf,t, where rf,t is the risk-free

rate proxied for by the one-month Treasury-bill rate.

After applying the aforementioned data-filtering criteria, we link the Trucost carbon

emissions data to the bond pricing data set through the linking table using bond CUSIP as the

main identifier. Our sample includes 20,668 bonds issued by 1,178 unique firms, for a total of

1,127,558 bond-month return observations covering the sample period from July 2006 to June

2019. As shown in Table 1, bonds in our sample have an average monthly return of 0.69%,

an average rating of 8 (i.e., BBB+), an average issue size of US$480 million, and an average

time-to-maturity of 9.74 years. The correlation between CEI and other bond characteristics

is low, with the absolute values in the range of 0.01 and 0.09. The sample consists of 76%

investment-grade bonds and 24% high-yield bonds.24

3.3 Corporate bond holdings

To investigate the institutional demand for corporate bonds, we collect the data on institutional

holdings of corporate bonds from Thomson Reuters eMaxx data. This data set comprehensively

covers quarterly fixed income holdings from U.S. institutional investors, such as insurance

companies and mutual funds, for the sample period from 2006 to 2019 (the earliest bond holding

23If there is no observation during the last 10 days, we use the last price at which the bond was traded in a
given month to calculate monthly return. Our results are similar if we set the bond price to be missing in this
case.

24We collect bond-level rating information from Mergent FISD historical ratings and assign a number to
facilitate the analysis. Specifically, 1 refers to a AAA rating; 2 refers to AA+; ...; and 21 refers to C. Investment-
grade bonds have ratings from 1 (AAA) to 10 (BBB-). Non-investment-grade bonds have ratings above 10. A
larger number indicates higher credit risk or lower credit quality. We determine a bond’s rating as the average
of ratings provided by S&P and Moody’s when both are available or as the rating provided by one of the two
rating agencies when only one rating is available.
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data start from 2001).25 For each bond, we aggregate the shares held by all institutional

investors provided in the data. Specifically, for a given bond i at time t, the measure of

institutional ownership is defined as

INSTit =
∑
j

(
Holdingijt

OutstandingAmtit

)
=
∑
j

hjt, (2)

where Holdingijt is the par amount holdings of investor j on bond i at time t (from the eMAXX

data), OutstandingAmtit is bond i’s outstanding amount (from the Mergent FISD database),

and hjt is the fraction of the outstanding amount held by investor j, expressed as a percentage.

3.4 Standard risk factors

We use three different factor models to adjust the risk exposures of CEI-sorted portfolios:

1. A five-factor model with stock market factors, including the excess return on the market

portfolio, proxied for by the value-weighted CRSP index (MKTStock), a size factor (SMB),

a book-to-market factor (HML), a momentum factor (MOMStock), and a liquidity risk factor

(LIQStock), following Fama and French (1993), Carhart (1997), and Pastor and Stambaugh

(2003).

2. A four-factor model with bond market factors, including the aggregate corporate bond

market (MKTBond), the downside risk factor (DRF), the credit risk factor (CRF), and the

liquidity risk factor (LRF), following Bai, Bali, and Wen (2019). The excess bond market

return (MKTBond) is proxied for by the return of the Merrill Lynch Aggregate Bond Market

index in excess of the one-month Treasury-bill rate.26 DRF is the downside risk factor, defined

as the value-weighted average return difference between the highest-VaR portfolio minus the

lowest-VaR portfolio within each rating portfolio. CRF is the credit risk factor, defined as the

value-weighted average return difference between the highest credit risk portfolio minus the

lowest credit risk portfolio within each illiquidity portfolio. LRF is the liquidity risk factor,

25eMAXX reports the quarterly holdings based on regulatory disclosure to the National Association of
Insurance Commissioners (NAIC) and the Securities and Exchange Commission (SEC) for insurance companies
and mutual funds, respectively. For major pension funds, it is a voluntary disclosure.

26We also consider alternative bond market proxies, such as the Barclays Aggregate Bond index, and the
value-weighted average returns of all corporate bonds in our sample. The results from these alternative bond
market proxies are similar to those reported in our tables.

15



defined as the value-weighted average return difference between the highest illiquidity portfolio

minus the lowest illiquidity portfolio within each rating portfolio.

3. A nine-factor model that combines the five stock market factors described in the first

factor model and the four bond market factors described in the second factor model.

4 Empirical Results

In this section, we first perform parametric and nonparametric tests to ascertain the predictive

power of firms’ carbon emissions intensity on the cross-section of corporate bond returns. We

start with univariate portfolio-level analyses presenting the average returns, alphas, and average

bond and firm characteristics of CEI-sorted portfolios. Second, we present the bond-level Fama-

MacBeth cross-sectional regression results controlling for bond characteristics, systematic risk

exposures, and climate change news betas. Finally, we perform a battery of robustness checks.

4.1 Univariate portfolio analysis

We form quintile portfolios comprising corporate bonds based on the firm-level CEI in June of

each year t for firms with a fiscal year ending in year t− 1. The portfolio returns are calculated

for July of year t to June of year t + 1 and then are rebalanced. The portfolios are value

weighted using the amounts outstanding as weights. Since carbon emissions levels intrinsically

vary across industries, we form portfolios within each of the 12 Fama-French industries to

control for the industry effect and to calculate the average portfolio returns across industries.27

Table 2 presents the value-weighted univariate portfolio results. Quintile 1 contains bonds

with the lowest CEI, and quintile 5 consists of bonds with the highest CEI. Table 2 shows,

for each quintile, the average CEI across the bonds, the next month’s value-weighted average

excess return, and the one-month-ahead risk-adjusted returns (alphas) produced from the three

different factor models. The last row displays the differences in the average returns and the

alphas between quintile 5 and quintile 1. The average excess returns and alphas are defined

27The corporate bond sample precludes us from using more granular industry classifications to control for
the industry effect.
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in terms of monthly percentages. Newey-West (1987) adjusted t-statistics are reported in

parentheses.

The first column in Table 2 shows significant cross-sectional variation in the average values

of carbon emissions intensity when moving from quintile 1 to quintile 5. An increase in the

average CEI from 36.75 (the lowest CEI) to 1, 227.34 (the highest CEI) produces a significant

dispersion of 1,091. Another notable point in Table 2 is that, the next-month’s average excess

return decreases from 0.37% to 0.23% per month, a decrease indicating an economically and

statistically significant monthly average return difference of −0.14% between quintiles 5 and 1

with a t-statistic of −2.62. This result shows that corporate bonds in the lowest-CEI quintile

generate 1.7% per annum higher returns than do bonds in the highest-CEI quintile.

In addition to the average excess returns, Table 2 presents the intercepts (alphas) from the

regression of the quintile excess portfolio returns on well-known stock and bond market factors:

the excess stock market return (MKTStock), the size factor (SMB), the book-to-market factor

(HML), the momentum factor (MOM), and the liquidity risk factor (LIQ), following Fama

and French (1993), Carhart (1997), and Pastor and Stambaugh (2003). The third column of

Table 2 shows that, similar to the average excess returns, the five-factor alpha on the CEI-sorted

portfolios also decreases from 0.26% to 0.13% per month as we move from the low-CEI quintile

to the high-CEI quintile, indicating a significant alpha difference of −0.13% per month (t-stat.=

−3.13). Beyond the well-known stock market factors, we test whether the significant return

difference between the low- and high-CEI bonds can be explained by the prominent bond market

factors proposed by Bai, Bali, and Wen (2019). The fourth column in Table 2 shows that the

four-factor alpha from the bond market factors decreases monotonically from 0.11% to −0.05%

per month when moving from the low-CEI to the high-CEI quintile. The corresponding four-

factor alpha difference between quintiles 5 and 1 is negative and highly significant at −0.16%

per month with a t-statistic of −2.98. The fifth column in Table 2 presents the nine-factor

alpha for each quintile from the combined five stock and four bond market factors. Consistent

with our earlier results, the nine-factor alpha decreases monotonically from 0.11% to −0.04%

per month when moving from the low-CEI quintile to the high-CEI quintile. This decrease

gives way to a significant alpha difference of −0.15% per month (t-stat. = −3.47).

Next, we investigate the source of the risk-adjusted return difference between low- and high-
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CEI portfolios: is it due to outperformance by low-CEI bonds, underperformance by high-CEI

bonds, or both? For this investigation, we focus on the economic and statistical significance

of the risk-adjusted returns of quintile 1 versus quintile 5. As reported in the fifth column

of Table 2, the nine-factor alpha of the bonds in quintile 1 (low-CEI bonds) is positive and

economically and statistically significant, whereas the corresponding alpha of bonds in quintile

5 (high-CEI bonds) is statistically insignificant. Hence, we conclude that the significantly

negative alpha spread between low- and high-CEI bonds is due to outperformance by low-CEI

bonds.

We further examine the average bond characteristics of CEI-sorted portfolios. As shown in

panel B of Table 2, bonds with high CEI (quintile 5) produce a higher market beta and have

higher downside risk, as proxied for by the 5% VaR. In addition, these bonds have lower liquidity,

higher credit risk, and are smaller in size. These results suggest that bonds of carbon-intensive

firms are riskier than bonds of firms with low carbon intensity. Yet, as shown in panel A of

Table 2, these bonds earn lower future returns. Similar to the findings in panel B, the results

in panel C show that firms with high CEI (i.e., quintile 5) yield a higher stock market beta and

book-to-market ratio, are smaller in size and less liquid, and are more volatile in terms of stock

return volatility and idiosyncratic volatility. When we examine the accounting fundamentals

for firms with different levels of CEI, panel D shows that high-CEI firms are less profitable on

average (i.e., have lower gross profitability, ROA, ROE, and operating profitability). Despite

having lower debt-to-equity and debt-to-assets ratios, firms with high CEI have a significantly

lower Tobin’s Q and cash-to-assets ratio and, on average, are two years older than firms with

low CEI.28

28Given that low-CEI firms are more profitable than high-CEI firms on average, we also investigate whether
the high returns from low-CEI bonds are driven by the profitability premium documented in Fama and French
(2015) and Hou, Xue, and Zhang (2015). Table A.2 of the Online Appendix presents significantly negative
alpha spreads between the low- and high-CEI portfolios based on the 5-factor model of Fama and French (2015)
and 4-factor (Q) model of Hou, Xue, and Zhang (2015), with a −0.13% per month (t-stat. = −2.68) and
−0.16% per month (t-stat. = −2.81), respectively. The last two columns of Table A.2 show that the magnitude
and statistical significance of the alpha spreads are very similar when we augment these models with the bond
market factors of Bai, Bali, and Wen (2019).
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4.2 Bond-level Fama-MacBeth regressions

In Section 4.1, we tested the significance of CEI as a cross-sectional determinant of future bond

returns at the portfolio level. We now examine the cross-sectional relation between CEI and

future returns at the bond level using Fama and MacBeth (1973) regressions.29 We present the

time-series averages of the slope coefficients from the regressions of future excess bond returns

on CEI and the control variables, including a number of systematic risk measures and bond

characteristics:

Ri,t+1 = λ0,t + λ1,t · ln(CEIi,t) +
K∑
k=1

λk,tControlk,t + εi,t+1, (3)

where Ri,t+1 is the excess return on bond i from July of year t to June of year t + 1. The

key independent variable is ln(CEIi,t), which is the natural log of firm-level carbon emissions

intensity in June of each year t for firms with a fiscal year ending in year t − 1. The term

Controlsk,t denotes a set of control variables, including (1) bond-level characteristics, such as

the bond market beta (βMKT
i,t ), downside risk proxied for by the 5% value-at-risk (V aRi,t), bond-

level illiquidity (Illiq), credit ratings (Rating), time-to-maturity (Maturity), the bond amount

outstanding (Size), and the one-month-lagged bond return (Lag return); (2) systematic risk

proxies, such as the default beta (βDEFi,t ), the term beta (βTERMi,t ), and the macroeconomic

uncertainty beta (βUNCi,t ) following Bali, Subrahmanyam, and Wen (2021b); and (3) the climate

change news beta (βClimatei,t ), which measures the covariance between corporate bond returns

and unexpected changes in climate change news index following Huynh and Xia (2021).30 To

account for systematic differences in carbon emissions across industries, we also control for the

Fama-French 12 industry fixed effects in all specifications. This step is consistent with that

taken in our univariate portfolio analysis.

Table 3 reports the time-series average of the intercepts, the slope coefficients (λs), and the

29We take the natural log of CEI, because carbon intensity has a highly skewed distribution.
30Following their study, we estimate the exposure of individual bonds to the climate change news index based

on monthly rolling regressions using a 36-month fixed window estimation. We require at least 24 months of
return observations to construct the climate change news beta (βClimate

i,t ). We find that the correlation between

ln(CEI) and βClimate is quite low at −0.04, indicating a significant difference between a firm’s carbon emissions
intensity and the climate change news beta which measures the bonds’ ability to hedge against climate change
news risk.
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adjusted R2 values over the 156 months from July 2006 to June 2019. Newey-West-adjusted

t-statistics are reported in parentheses. The univariate regression results reveal a negative and

significant relation between CEI and the cross-section of future bond returns. In regression

(1), the average slope λ1,t from the monthly regressions of excess returns on ln(CEI) alone is

−0.046 with a t-statistic of −2.76. The economic magnitude of the associated effect is similar

to that shown in Table 2 for the univariate quintile portfolios of CEI. The spread in the average

ln(CEI) between quintiles 5 and 1 is approximately 3.42, and multiplying this spread by the

average slope of −0.046 yields an estimated monthly return spread of 16 basis points (bps).31

Regression specification (2) in Table 3 shows that after we control for market risk (βBond),

downside risk, illiquidity, credit ratings, maturity, size, and the previous month’s bond return,

the average slope coefficient for ln(CEI) remains negative and highly significant. In other

words, controlling for bond characteristics does not affect the predictive power of carbon

emissions intensity in the corporate bond market.

Regression (3) tests the cross-sectional predictive power of CEI, while controlling for other

systematic risk measures, namely, the default beta, the term beta, and the macroeconomic

uncertainty beta. In addition, we control for the climate change news beta in Huynh and

Xia (2021), who show that shocks to the climate change news index is priced in corporate

bonds. In particular, they show that corporate bonds with a higher climate change news beta

earns lower future returns, consistent with the asset pricing implications of excess demand for

bonds with the potential to hedge against climate risk. Consistent with Bali, Subrahmanyam,

and Wen (2021b), Regression (3) shows a significantly negative relation between the bond

macroeconomic uncertainty beta (βUNC) and future bond returns. The average slope on βUNC

is economically and statistically significant at −0.134 (t-statistic = −2.98). Importantly, the

average slope coefficient for ln(CEI) remains negative and highly significant, −0.038 (t-stat.

= −2.56), indicating that exposures to systematic risk or climate change news index do not

explain the predictive power of carbon emissions intensity for future bond returns.

The last specification, Regression (4), controls for all bond return characteristics, systematic

31Note that the ordinary least squares (OLS) methodology used in the Fama-MacBeth regressions equally
weights each cross-sectional observation so that the regression results are more aligned with the equal-weighted
portfolios. Thus, the CEI obtained from the Fama-MacBeth regressions, 0.16% per month, is somewhat higher
than the 0.14% per month obtained from the value-weighted portfolios (see Table 2).
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risk, and climate change news betas. Similar to our findings in Regression (1), the cross-sectional

relation between future bond returns and CEI is negative and highly significant. The negative

average slope of −0.036 for ln(CEI) in Regression (5) represents an economically significant

effect of 0.12% per month between the top and bottom quintiles, controlling for everything else.

These results show that our carbon intensity measure carries distinct, significant information

beyond information about bond size, maturity, rating, liquidity, market risk, default risk, and

climate change news risk. Thus, carbon emissions intensity is a strong and robust predictor of

future bond returns.

4.3 Robustness checks

4.3.1 Different categories of carbon emission

Our results so far use a firm’s scope 1 carbon emissions scaled by total revenue as the main

measure of carbon emissions intensity. As is shown by Bolton and Kacperczyk (2021), the data

on scope 1 and scope 2 emissions are widely reported. Scope 3 emissions, on the other hand,

are estimated using an input-output matrix and have only been widely reported by companies

as of recently. As a result, in this section, we examine whether our main results hold using a

different category of carbon emissions based on scope 2 emissions scaled by total revenue as

the main measure of carbon emissions intensity. In addition, we combine scope 1 and scope 2

emissions to generate a broader category measure of carbon emissions intensity, Total Scope,

defined as below:

Total Scope =
Scope 1(tCO2e) + Scope 2(tCO2e)

revenue($mil)
. (4)

Panel A of Table 4 shows that our main findings remain similar when we use different

categories of carbon emissions. The average return and nine-factor alpha spreads between low-

and high-CEI bonds are −0.12% (t-stat. = −1.90) and −0.15% (t-stat. = −3.04), respectively,

when we use a firm’s scope 2 carbon emissions as the main measure of carbon emissions intensity.

Moreover, panel A shows economically and statistically significant returns and alpha spreads

when we combine both scope 1 and scope 2 carbon emissions (Total Scope), indicating a
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significant relation between the broader measure of carbon emissions intensity and future bond

returns.

4.3.2 Excluding the most carbon-intensive industries

Carbon emissions intrinsically vary across industries, and we control for industry effects when

forming portfolios in Section 4.1 and in the cross-sectional regression analyses in Section 4.2. In

this section, we further investigate whether our results remain intact when we exclude the most

carbon-intensive industries that could drive the main results. For instance, firms in the energy,

chemical, or utility industry are highly likely to be carbon-intensive compared to firms in other

industries. To investigate whether the low carbon alpha exists across a broader category of

industries, not just the most carbon-intensive industries, we exclude the most carbon-intensive

industries one by one and then all together.32

Panel B of Table 4 shows that the most carbon-intensive industries do not drive our main

results, rather the effect exists among a broader category of industries. Specifically, the nine-

factor alpha spreads between low- and high-CEI bonds remain economically and statistically

significant and are −0.09% (t-stat. = −2.78), −0.14% (t-stat. = −3.57), and −0.14% (t-stat.

= −3.59), respectively, when we exclude the energy, chemical, or utilities industry one by

one. Moreover, when we exclude all three carbon-intensive industries, the average return and

nine-factor alpha spreads between low- and high-CEI bonds are −0.11% (t-stat. = −2.39) and

−0.12% (t-stat. = −3.04), respectively, indicating the presence of a pervasive low carbon alpha

in other industries.

4.3.3 Orthogonalized carbon emission intensity

As discussed earlier, carbon emission intensity and firm-level characteristics are correlated.

To investigate the concern about what unique information carbon emission intensity carries,

32We also perform an additional test to ascertain the predictive power of carbon emissions intensity of
corporate bond returns at the industry level in Table A.3 of the Online Appendix. We form quintile portfolios
of corporate bonds based on the average industry-level CEI using the Fama-French 30 industry classifications.
Consistent with the earlier findings in Table 2, Table A.3 of the Online Appendix shows the average return
and nine-factor alpha spreads of corporate bonds between low- and high-CEI industry are −0.15% (t-stat. =
−2.62) and −0.12% (t-stat. = −2.38), respectively, indicating the presence of a pervasive low carbon alpha at
the industry-level.
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we construct orthogonalized carbon emission intensity. Specifically, we run contemporaneous

cross-sectional regressions of carbon emission intensity (in logarithm) with respect to firm-level

characteristics to investigate the unique information in CEI, above and beyond these firm-level

characteristics, including return-on-assets (ROA), debt-to-assets ratio (Debt/Assets), Tobin’s

Q, cash-to-assets ratio (Cash/Assets), and firm age (Age):

ln(CEIi,t) = λ0,t + λ1,tROAi,t + λ2,t(Debt/Assets)i,t + λ3,t(Tobin
′s Q)i,t

+λ4,t(Cash/Assets)i,t + λ5,tAgei,t + εCEIi,t . (5)

Once we generate the residuals from the above regression, we label them as orthogonalized

carbon emission intensity (CEI⊥). We then repeat the Fama-MacBeth regressions of Table 3

using CEI⊥ as the main independent variable and report the results in Table A.4 of the Online

Appendix. The results show that the orthogonalized carbon emission intensity remains as a

significant predictor for future bond returns and are robust to controlling for the other bond-

level risk characteristics.

4.3.4 Firm-level evidence

Our empirical analyses thus far have been based on bond-level data since we test whether the

carbon emissions intensity of a firm predicts the firm’s future bond returns. One concern is

that firms with large numbers of distinct bond issues can have a material impact on the cross-

sectional relations that we are testing. In this section, we use three different approaches to

control for the effect of multiple bonds issued by the same firm by (1) forming value-weighted

average bond returns across the same firm and (2) picking the largest bond or the most-liquid

bond as representative of the firm to replicate our portfolio-level analysis using this firm-level

data set. Panel C of Table 4 presents the value-weighted quintile portfolios, which indicate

significant differences in the cross-section of firm-level bond returns. Specifically, the value-

weighted average return and nine-factor alpha spreads between low-CEI and high-CEI firms

are −0.10% (t-stat. = −2.78) and −0.12% (t-statistic = −2.93), respectively. In panel C when

the largest or the most-liquid bond is chosen as the representative of the firm, the return effect

remains highly significant.
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4.3.5 Subperiod analyses

We examine whether our finding is robust across different subperiods. First, we estimate the

carbon premium after excluding the period of the financial crisis, which we define as September

2008 to December 2009. Lins, Servaes, and Tamayo (2017) find that high-corporate-social-

responsibility (CSR) firms reported significantly better stock and operating performance than

do low-CSR firms during the 2008–2009 financial crisis. Carbon emissions is an important

component of firms’ ESG rating, so the outperformance of low-CEI bonds could be concentrated

in the crisis period. Panel D of Table 4 shows that the average return and alpha spreads between

the low- and high-CEI portfolios are, respectively, −0.14% per month (t-stat. = −2.21) and

−0.12% per month (t-stat. = −3.17), indicating that excluding the crisis period does not affect

our results.

Second, we investigate the carbon premium for the two subperiods based on a six-year

interval: (a) the first precrisis subperiod from July 2006 to June 2013 and (b) the most recent

subperiod from July 2013 to June 2019. Panel D of Table 4 shows the effect is stronger for the

first subperiod; the average return and alpha spreads between the low- and high-CEI portfolios

are, respectively, −0.18% per month (t-stat. = −2.06) and −0.16% per month (t-stat. =

−2.46). The carbon premium has a weaker economic significance for the second subperiod but

remains statistically significant; the average return and alpha spreads between the low- and

high-CEI portfolios are, respectively, −0.11% per month (t-stat. = −1.96) and −0.10% per

month (t-stat. = −2.48).

5 Sources of Low Carbon Alpha

The return predictability results in Section 4 show that bonds from firms with higher CEI

underperform firms with lower CEI. This result, combined with the evidence that bonds from

high-CEI firms are riskier than those from low-CEI firms, indicates that H1 (the “carbon risk

premium” hypothesis) is not supported.33

33The prediction in H1 is that bonds issued by carbon-intensive firms are riskier because such bonds are more
likely to lose value when climate policies become more stringent and consumers shift to green firms, affecting
the profitability and solvency of brown firms.
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On the other hand, H2 (the “investor preference” hypothesis) predicts that green firms

could outperform brown firms if investors’ preferences for ESG unexpectedly strengthens over

the sample period. We rely on the corporate bond institutional holdings data to test the asset

pricing implications of the investor preference hypothesis in Sections 5.1.1 and 5.1.2.

Finally, carbon intensity can be predictive of firms’ expected profitability and fundamental

performance, which can affect the expected return of corporate bonds if investors underreact

to this predictability of fundamentals (Pedersen, Fitzgibbons, and Pomorski, 2021). To test

this “investor underreaction” hypothesis (H3), we first conduct subsample analysis conditional

on bonds with different information asymmetry, and over subperiods with time-varying public

attention to climate change in Section 5.2.1. We then test whether investors are negatively

surprised by the poorer future performance of high-CEI firms in Sections 5.2.2 and 5.2.3.

Moreover, we explore one specific channel through which high CEI translates into poor

fundamental performance, by investigating the relation between CEI and a firm’s future

environmental incidents in Section 5.2.4. We further investigate the implication of carbon

emissions intensity for a firm’s left tail risk in Section 5.2.5, as a major driver of integrating

ESG scores into the investment process is to reduce downside risk exposures (BlackRock, 2015).

Finally, we show the return prediction of the investor underreaction hypothesis also hold true

for stock market in Section 5.2.6.

5.1 Testing investor preference hypothesis

5.1.1 Carbon emissions intensity and corporate bond institutional ownership

The investor preference hypothesis (H2) predicts that corporate bonds for firms with low (high)

carbon emissions intensity perform better (worse) than expected if ESG concerns unexpectedly

strengthen (Pastor, Stambaugh, and Taylor, 2020). Based on a survey about individuals’

climate risk perceptions, Krueger, Sautner, and Starks (2020) show that institutional investors

believe climate risks have financial consequences for their portfolio firms and that climate risks,

particularly regulatory risks, already have begun to materialize. To test this hypothesis, we

rely on Refinitiv eMAXX corporate bond holdings data.
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We first examine the cross-sectional relation between CEI and future changes in institutional

ownership using Fama-MacBeth regressions. We present the time-series averages of the slope

coefficients from the regressions of changes in institutional ownership on CEI and the control

variables, including a number of systematic risk measures and bond characteristics:

∆INST Bondi,t+1 = λ0,t + λ1,t · ln(CEIi,t) +
K∑
k=1

λk,tControlk,t + εi,t+1, (6)

where the dependent variable is the change in bonds’ institutional ownership (∆INST Bond),

defined as the institutional ownership in June of year t+ 1 minus the institutional ownership in

June of year t. The key independent variable is ln(CEIi,t), which is the natural log of firm-level

carbon emissions intensity in June of each year t, for firms with a fiscal year ending in year t−1.

The term Controlsk,t denotes a set of control variables, including bond-level characteristics, such

as the bond market beta (βMKT
i,t ), downside risk, bond-level illiquidity, credit ratings, time-to-

maturity, the bond amount outstanding (size), and the past six-month cumulative bond returns

(Rt−7:t−2). We also include additional controls related to systematic and climate risk proxies,

such as the default beta (βDEFi,t ), the term beta (βTERMi,t ), the macroeconomic uncertainty

beta (βUNCi,t ), and the climate change news beta (βClimatei,t ). To better interpret their economic

significance, we standardize all independent variables in the cross section to have a mean of

zero and standard deviation of one.

Panel A of Table 5 shows the results of changes in bonds’ institutional ownership. Regression

(1) of panel A shows a negative and significant relation between CEI and changes in bonds’

institutional ownership. The average slope λ1,t for ln(CEI) alone is −0.471 with a t-statistic of

−3.66, implying a one-standard-deviation increase in ln(CEI) is associated with a 0.471%

decrease in bonds’ institutional ownership. This economic magnitude is translated into a

26.5% decrease in ∆INST Bond given the average ∆INST Bond in our bond sample is 1.77%.

Regression specification (2) in panel A shows that after we control for market risk (βBond),

downside risk, illiquidity, credit ratings, maturity, size, and past six-month cumulative bond

return, the average slope coefficient for CEI remains negative and highly significant.

Regression (3) in panel A of Table 5 tests the cross-sectional predictive power of CEI,

while controlling for exposures to other systematic/climate change news risks. Importantly, the
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average slope coefficient for ln(CEI) remains negative and highly significant, −0.489 (t-stat.

= −4.51), indicating that systematic risk or climate change news betas do not explain the

predictive power of carbon emissions intensity for changes in institutional ownership. The last

specification, Regression (4), controls for all bond return characteristics, systematic risk, and

climate change news beta. Similar to our findings in Regression (1), the cross-sectional relation

between ∆INST Bond and CEI is negative and highly significant. The negative average slope

of −0.226 on ln(CEI) in Regression (4) represents a 12.6% decrease in ∆INST Bond relative

to the average changes in bond’s institutional ownership, controlling for everything else.

5.1.2 Do changes in institutional ownership fully explain the low carbon alpha?

The results in panel A of Table 5 suggest that institutional investors divest from bonds issued

by firms with high carbon intensity. However, whether divestment by institutions can generate

sufficient impacts on bond returns is unclear. To further investigate how ownership changes

affect future bond returns, we examine whether the underperformance associated with high-

CEI bonds (i.e., the findings in Table 3) can be fully explained by changes in institutional

ownership through the divestment channel. Specifically, we replicate Table 3 in panel B of

Table 5, where we include as one additional control the contemporaneous changes in bonds’

institutional ownership (∆INST Bond),

Ri,t+1 = λ0,t + λ1,t · ln(CEIi,t) + λ2,t · ∆INST Bondi,t+1 +
K∑
k=1

λk,tControlk,t + εi,t+1, (7)

where Ri,t+1 is the bond excess return from July of year t to June of year t+1. ∆ INST Bondi,t+1

denotes contemporaneous changes in bonds’ institutional ownership measured over the same

time horizon as the dependent variable bond returns. We include the same set of control

variables, Controlsk,t, used in Table 3. If changes in bonds’ institutional ownership fully explain

the high (low) returns associated with low- (high-)CEI bonds, then we should expect that

ln(CEI) loses its predictive power for future bond returns once we control for ∆INST Bond.

Panel B of Table 5 shows that the coefficients for ln(CEI) remain significantly negative for
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all specifications. After controlling for contemporaneous changes in institutional ownership,

bond characteristics and systematic/climate change news betas, regression (4) shows a

coefficient of −0.027 (t-stat. = −2.15) for carbon emissions intensity, indicating that

∆INST Bond cannot fully explain the outperformance of low-CEI bonds shown in Table 3.

The coefficient of −0.027 for ln(CEI) in panel B of Table 5 is smaller than that of Table 3,

−0.036 in regression (4), representing a 25% reduction in the return spread once ∆INST Bond

is controlled for. However, the predictive power of carbon emissions intensity for future bond

returns remains economically and statistically significant. In addition, panel B of Table 5 shows

that although the coefficients for ∆INST Bond are positive, none of them is significant, and

the adjusted R-squared’s are similar to those in Table 3, indicating that shifts in institutional

demand do not have significant pricing impacts on corporate bonds.34

5.2 Testing investor underreaction hypothesis

5.2.1 Subsample analyses

Investor underreaction hypothesis (H3) implies that the return predictability should be more

pronounced among bonds with higher information asymmetry. To test this hypothesis, Table 6

presents results for the univariate portfolios sorted by CEI for the subsample of bonds based

on commonly used information asymmetry proxies, including issuance size, credit rating, time-

to-maturity, as well as bond-level illiquidity.35 These proxies for information asymmetry in the

bond market are motivated by a number of studies. For example, Glosten and Milgrom (1985)

show that the realized bid-ask spread widens with the asymmetry of information and is related

to the extent of informed trading. Moreover, Han and Zhou (2014) argue that information

34We conduct two additional robustness tests on the relation between changes in institutional ownership
and future bond returns. First, to control for the persistent effect of ∆INST Bond, Table A.5 of the Online
Appendix replicates the results in Panel B of Table 5 by including additional lagged changes in bonds’
institutional ownership (∆INST Bond), including the 1-year and 2-year lagged change of ∆INST Bond. Second,
to address potential non-linearity between ∆INST Bond and future bond returns, Table A.6 of the Online
Appendix replicates the results in Panel B of Table 5 by including dummy variables of the change in bonds’
institutional ownership. As shown by both tables, the coefficients for ln(CEI) remain significantly negative
for all specifications, indicating that none of the contemporaneous or lagged changes in institutional ownership
fully explains the negative relation between carbon emission and future bond returns.

35Bond issuance sizes are typical proxies for trade informativeness in the literature, as they are related to
broader investor base and, again, more in-depth analyst coverage, which supposedly leads to a higher number
of investors who are ready to arbitrage out bond misvaluations (Ivashchenko, 2019).
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motives are present in the pricing of bonds of various credit quality by pointing to the positive

relationship between microstructure-based information asymmetry measures and bond yield

spreads. Hendershott, Kozhan, and Raman (2020) show that information-driven trading is

present in high-yield bonds but not in the investment-grade universe.

Panel A of Table 6 shows that the return and alpha spreads are economically and statistically

significant for both large and small bonds, but this effect is stronger among small bonds with

a nine-factor alpha −0.22% (t-stat. = −3.94) per month, compared to −0.15% (t-stat. =

−2.00) for large bonds. Similarly, panels B to D show that the average return and alpha

spreads between the low- and high-CEI portfolios are more pronounced for bonds with lower

credit rating, longer time-to-maturity, and are more illiquid. For example, the nine-factor

alpha spreads between the low- and high-CEI portfolios are −0.23% (t-stat. = −3.06) for

longer-maturity bonds and −0.13% (t-stat. = −3.02) for shorter-maturity bonds. Overall,

the subsample results indicate a more pronounced low carbon alpha for bonds with higher

information asymmetry, consistent with the idea that underreaction to fundamentals is more

likely to occur when information is less available (Hong, Lim, and Stein, 2000).

Another implication of investor underreaction hypothesis is that the return predictability of

CEI should be weaker during periods when investor attention to climate risks is high. To test

this prediction empirically, we follow Choi, Gao, and Jiang (2020) and use the Abnormal Google

Search Volume Index (ASVI) on the topics of “climate change” or “global warming” as proxies

for investor attention to climate change.36 Panel A of Table A.7 of the Online Appendix shows

that the low carbon alpha is indeed much weaker in periods when investor attention to climate

change increases. Specifically, the monthly return difference between the low- and high-CEI

quintile are both economically and statistically insignificant at 0.05% (t-stat. = 0.84) and 0.07%

(t-stat. = 1.25) per month, respectively, when ASVI on the topics of climate change and global

warming increases. In sharp contrast, the low carbon alpha is much larger at 0.26% (t-stat. =

4.30) and 0.23% (t-stat. = 3.81) per month when investor attention to climate change decreases.

Second, prior studies show that investors become more aware of climate policy risks after the

Paris Agreement adopted in December 2015 (Monasterolo and De Angelis, 2020). We thus

36ASVI is calculated as the natural log of the ratio of SVI to the average SVI over the previous three months.
A positive (negative) value of ASVI is associated with an increase (decrease) in investor attention.
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conjecture that the low carbon alpha should be weaker in the post-Paris agreement period. In

Panel B of Table A.7, we report the low-minus-high CEI portfolio returns over two subperiods:

July 2006 to December 2015 (Pre-Paris agreement) and January 2016 to June 2019 (Post-Paris

agreement). We find a much attenuated low carbon alpha that is statistically insignificant in

the post-Paris agreement period but a monthly return spread of 0.19% per month (t-stat. =

3.65) prior to the agreement. Finally, to further investigate whether there is a regime shift after

the Paris agreement, we conduct a structural break test on the low-minus-high return with

unknown break date in Panel C of Table A.7. The test identifies March 2016 as the structural

break date, which aligns well with the time when Paris agreement was adopted.

5.2.2 Carbon emissions intensity and cash flow surprises

We further examine whether the low carbon alpha in the bond market could be explained

by investors underreacting to the predictability of CEI for firm fundamentals (H3). If this

is the underlying channel, we expect that a firm’s carbon emissions intensity negatively

predicts its future fundamental performance, and investors are systematically surprised when

the fundamental information is disclosed to the market. We use earnings and revenue surprise

as measures of firm fundamental news to test this hypothesis.

Our first proxy for cash flow surprises is standardized unexpected earnings (SUE). SUE

is defined as the change of quarterly earnings-per-share (EPS) from four quarters ago divided

by the standard deviation of this change in quarterly earnings over the prior eight quarters.

In our setting, we examine the predictability of carbon emissions intensity for future earnings

surprises using SUE as the dependent variable and CEI as the primary explanatory variable.

Specifically, we use the following regression specification:

SUEi,t+1 = λ0,t + λ1,t · ln(CEIi,t) +
K∑
k=1

λk,tControlk,t + εi,t+1, (8)

where SUEi,t+1 is the standardized unexpected earnings of firm i over the period of July of

year t to June of year t + 1. The key independent variable is ln(CEIi,t), the natural log of

firm-level carbon emissions intensity in June of each year t, for firms with a fiscal year ending

in year t − 1. Controlk,t denotes a set of control variables, including a one-quarter-lagged
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dependent variable, a four-quarter-lagged dependent variable, firm size, the book-to-market

ratio, return-on-equity (ROE), R&D intensity (R&D), investment, operating cash flows (OCF),

institutional ownership, and momentum. We also include industry and/or quarter fixed effects

in the regression. Standard errors are clustered at the firm level. Columns 1 and 2 of Table

7 report the regression results. The coefficient for ln(CEI) is significantly negative for both

specifications. With industry and quarter fixed effects in column 2, the coefficient for ln(CEI)

is −0.0128 (t-stat. = −2.19), indicating that a one-standard-deviation increase in ln(CEI)

leads to a 0.0312 (=0.0128 × 2.4389) lower SUE, which is economically meaningful compared

to the mean SUE of 0.2016.

We use the standardized unexpected revenue growth estimator (SURGE) as an alternative

measure of firm fundamental news (Jegadeesh and Livnat, 2006). SURGE is defined as the

change in revenue per share from its value four quarters ago divided by the standard deviation

of this change in quarterly revenue per share over the prior eight quarters. We use the same

specification as in Equation 8, except we replace SUE with SURGE, and use the same set of

control variables. Columns 3 and 4 of Table 7 report the regression results. The coefficients for

ln(CEI) are significantly negative, suggesting that more carbon-intensive firms subsequently

have lower revenue growth.

To test whether investors underreact to the predictability of CEI for future cash flow

surprises, we examine market reactions around earnings announcements. We extract quarterly

earnings announcement dates from Compustat and calculate the cumulative abnormal return

CAR(−2, +1) in a four-day window around the earnings announcements, with abnormal

returns defined as raw stock returns adjusted by the CRSP value-weighted index return. We

use the same specification used in Equation 8, except we replace SUE with CAR(−2, +1),

and use the same set of control variables. Columns 5 and 6 of Table 7 report the regression

results. The coefficients for ln(CEI) are significantly negative for both specifications. With

industry and quarter fixed effects in column 6, the economic magnitude suggests that a one-

standard-deviation increase in ln(CEI) leads to a 5-bps lower market reaction around earnings

announcements.

Overall, our finding that firms with higher carbon emissions intensity have lower earnings

(revenue) surprise and a more negative earnings announement return suggests that investors fail
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to unravel the information contained in firms’ carbon intensity when forming expectations about

future earnings. As a result, investors are systematically surprised when fundamental news

is subsequently disclosed to the market via earnings announcements. Since bonds represent

contigent claims on firms’ cash flows and underlying assets, investors underreaction to the

predictive power of CEI for firm fundamentals may well explain the underperformance of high-

CEI bonds.

5.2.3 Carbon emissions intensity and firms’ creditworthiness

In Section 5.2.2, we show that firms with a high- (low-)CEI are associated with subsequent

poorer (better) fundamental performance. Poorer firm fundamentals should naturally lead

to deteriorated creditworthiness for the firm, and lower creditworthiness should then drive

the underperformance of bonds from high-CEI firms. We test this prediction by examining

the relation between CEI and subsequent changes in bond credit ratings. Specifically, our

dependent variable of interest is the change in bond credit rating (∆Rating), and our key

explanatory variable is firm-level CEI. Our regression specification is

∆Ratingi,t+1 = λ0,t + λ1,t · ln(CEIi,t) +
K∑
k=1

λk,tControlk,t + εi,t+1, (9)

where ∆Ratingi,t+1 is the credit rating of bond i in June of year t + 1 minus its credit rating

in June of year t. Ratings are in conventional numerical scores, where 1 refers to an AAA

rating and 21 refers to a C rating. A higher numerical score implies higher default risk or

lower creditworthiness. The key independent variable is ln(CEIi,t), the natural log of firm-

level carbon emissions intensity in June of each year t, for firms with a fiscal year ending in

year t − 1. Controlk,t denotes control variables, including firm size, the book-to-market ratio,

return-on-equity (ROE), R&D intensity (R&D), investment, operating cash flows (OCF), and

institutional ownership. We also include bond and year fixed effects, and we cluster standard

errors at the firm level. Column 1 of Table 8 shows that the coefficients for ln(CEI) are

significantly positive, indicating that high carbon intensity firm experiences deteriorated credit

rating on its bonds over the next year.

In addition to bond credit ratings, we construct Ohlson (1980)’s O-score as an alternative
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proxy of firm creditworthiness. A higher O-score represents a higher probability of financial

distress and lower firm creditworthiness. We use the same specification used in Equation 9,

except that we replace ∆Ratingi,t+1 with the change in firm-level O-score, and use the same set

of control variables. Specifically, the dependent variable ∆O Scorei,t+1 is the O-score of firm i

in June of year t+ 1 minus its most recent quarter O-score before June of year t. Column 2 of

Table 8 reports the results. Consistent with the results on credit rating changes, we find that

firms with high carbon intensity experience an increase in the probability of financial distress

in the future. Overall, these results lend support to the conjecture that the source of the low

carbon alpha arises from the predictability of CEI for a change in firm creditworthiness.37

5.2.4 Carbon emissions intensity and environmental incidents

Our results so far suggest that firms with higher carbon emissions intensity have more negative

cash flow news and deteriorating creditworthiness in the future. In this section, we explore

one specific channel through which higher CEI translates into lower future firm fundamentals.

Our conjecture is that a firm’s environmental risk is persistent and carbon-intensive firms are

more likely to face negative environment incidents in the future than carbon efficient firms.

If investors are not aware of or fully react to these firms’ persistently high environmental

risks, carbon-intensive firms could experience negative cash flow shocks and lower realized

bond returns.

To analyze the persistency in a firm’s environment risks, we obtain the data on ESG incidents

from RepRisk, a Zurich-based provider of ESG data. RepRisk uses a rigorous process to identify

and rate negative ESG incidents, using information from over 80,000 sources on firm incidents

37In addition to changes in a firm’s creditworthiness, we also investigate the relation between CEI and
subsequent changes in bond yield-to-maturity (YTM). Table A.8 of the Online Appendix shows that firms
with low (high) carbon emissions intensity experience a reduction (increase) in yield-to-maturity in the future,
consistent with the conjecture that bonds for high-CEI firms are perceived to be more risky because of the
deteriorating firm fundamentals, lower creditworthiness, and higher probability of financial distress.
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that are related to one of the 28 predefined ESG incidents.38 The incident is quantified by the

RepRisk Index, a proprietary algorithm, which measures the ESG-related risk exposure of a

firm. The RepRisk index ranges from 0 to 100, with a higher number indicating a higher ESG

risk exposure. The RepRisk index of a firm increases whenever the firm is associated with an

ESG incident, and the relative increase depends on the severity, the reach, and the novelty of

the incident and on the intensity of the news about the incident. One important advantage

of the RepRisk index is that it is constructed using realized ESG incidents that are identified

by systematically searching through the news, and hence is less subjective and less prone to

manipulation by firms (Gloßner, 2018).

We test our prediction by examining whether carbon-intensive firms have more environmen-

tal incidents than peer firms. As every positive change in the RepRisk index indicates an ESG

incident, we measure the overall amount of ESG incidents in a year using the annual sum of

the positive changes in the RepRisk Index. To ensure that we capture a firm’s environmental

incidents rather than the “Social” and “Governance” aspects of the RepRisk Index, we require

the percentage of environmental issues used to compute the RepRisk Index is greater than

50%.39 Our regression specification is

Ln(1 + Incidentsi,t+1) = λ0,t + λ1,t · ln(CEIi,t) +
K∑
k=1

λk,tControlk,t + εi,t+1, (10)

where Incidentsi,t+1 is the sum of all positive changes in the RepRisk Index of firm i from July

of year t to June of year t+ 1. We take the natural log of the variable Incidentsi,t+1 because it

is highly skewed to the right. Note that the variable Ln(1 + Incidentsi,t+1) has a value of zero

when firm i has no ESG incidents over a period. The key independent variable is ln(CEIi,t),

the natural log of firm-level carbon emissions intensity in June of each year t, for firms with

a fiscal year ending in year t − 1. Controlk,t denotes the same set of control variables as in

38These sources include print and online media (including local, national, and international media), NGOs,
government agencies, think tanks, social media, along with many others. To screen these sources, RepRisk uses
a variety of artificial intelligence tools, such as advanced search algorithms, semantic web-tools, or web-crawls.
Second, every identified incident is checked by a 1st-level RepRisk analyst who ensures that the incident is
ESG-related, meets a severity threshold, and is not a duplicate of an older incident. Third, the incident is
analyzed by a 2nd-level RepRisk analyst who considers the severity of the incident, the reach of the information
source, and the novelty of the incident. Fourth, every incident undergoes a quality review by a RepRisk senior
analyst who ensures that the second and third steps are processed according to RepRisk’s rules.

39Our results are similar if we use alternative threshold of 60% and 80% as cutoff.
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Equation 9. We also include industry and/or year fixed effects and cluster standard errors at

the firm level.

Table 9 shows the regression results. Column (1) shows that the coefficient on ln(CEI) is

0.16 with a highly significant t-statistic of 15.90, indicating that high-CEI firms experience more

environmental incidents in the next year than low-CEI firms do. Multiplying the coefficient on

ln(CEI) with the spread in the average ln(CEI) between quintiles 5 and 1 in Table 2 yields

an estimated difference of 0.547 ( =0.16 × 3.42). As a result, the economic significance shows

that high-CEI firms (quintile 5) experiences 54.7% more environmental incidents than low-CEI

firms (quintile 1) over the following year. In column 2, we control for industry fixed effects

and find similar results. Overall, the results support our conjecture that carbon-intensive firms

have persistently high environment risk exposures, which are subsequently manifested in more

environmental incidents, poorer fundamentals, and deteriorating creditworthiness.40

5.2.5 Carbon emissions intensity and downside risk

Finally, we investigate the implication of carbon emissions intensity for a firm’s left tail risk,

as bond values are particularly sensitive to downside risk (Hong and Sraer, 2013). This test

is partly motivated by practitioners’ argument that a major driver of integrating ESG scores

into the investment process is to reduce downside risk exposures, as negative ESG exposures

could imply substantial legal, reputational, operational, and financial risks (BlackRock, 2015).

Following the literature (Chen, Hong, and Stein, 2001; Kim, Li, and Zhang, 2011), we use

stock price crash risk proxies to measure the downside risk of a firm. To calculate firm-specific

crash risk measures, we first estimate firm-specific weekly returns for each firm and year.41

Specifically, the firm-specific weekly return, denoted by W , is defined as the natural log of one

40The results in Sections 5.2.2 and 5.2.3 show that firms with high carbon emissions intensity have poorer
future fundamentals as well as deteriorating credit ratings. We further examine whether the CEI/return relation
is most pronounced among firms with high leverage, compared to those with low leverage, given that firms
with higher leverage ratio more likely fall into financial distress when facing negative environmental incidents.
Consistent with this prediction, Table A.9 of the Online Appendix shows significantly negative return and alpha
spreads between the low- and high-CEI portfolios for high-levered firms, in the range of −0.38% per month
(t-stat. = −2.16) and −0.60% per month (t-stat. = −3.24). In contrast, the low carbon alpha is insignificant
among firms with below-the-median leverage.

41The crash risk measures are constructed using weekly stock return data from July 2006 to June 2019.
Specifically, we first calculate the weekly return by compounding daily returns from Monday to Friday, and
then assign weekly returns to the 12-month period over July of year t to June of year t+ 1 for each firm-year.
We require at least 26 weeks of data available in a firm-year.
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plus the residual return from the expanded market model regression,

ri,t = β0,t + β1,trm,t−2 + β2,trm,t−1 + β3,trm,t + β4,trm,t+1 + β5,trm,t+2 + εi,t, (11)

where ri,t is the return on stock i in week t and rm,t is the return on the CRSP value-weighted

market index in week t. We include the pre- and post-two weeks for the market index return to

allow for nonsynchronous trading. The firm-specific return for firm i in week t, Wi,t, is measured

by the natural log of one plus the residual return from Equation 11, Wi,t = ln(1 + εi,t).

Following Chen, Hong, and Stein (2001), our first measure of crash risk is the negative

conditional return skewness (NCSKEW). NCSKEW for a firm-year is calculated by taking the

negative of the third moment of firm-specific weekly returns for each sample year and dividing

it by the standard deviation of firm-specific weekly returns raised to the third power, as shown

in Equation 12,

NCSKEWi,t =
n (n− 1)3∑W 3

i,t

(n− 1) (n− 2)
(∑

W 2
i,t

)3/2
(12)

Our second measure of crash risk is the “down-to-up volatility” (DUVOL), which captures

asymmetric volatilities between negative and positive firm-specific weekly returns. DUVOL

for a firm-year is calculated by first separating all weeks with returns below the sample mean

(“down” weeks), from those with returns above the sample mean (“up” weeks), and then taking

the standard deviation for each of these subsamples separately. We then take the natural log

of the ratio of the standard deviation on the down weeks to the standard deviation on the up

weeks, as shown in Equation 13,

DUV OLi,t = log

{
(nu − 1)

∑
DownW

2
i,t

(nd − 1)
∑

UpW
2
i,t

}
(13)

In our setting, we examine the predictability of carbon emissions intensity for the future

stock price crash risk using the specification below,
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NCSKEW (DUV OL)i,t+1 = λo,t + λ1,t · ln(CEIi,t) +
K∑
k=1

λk,tControlk,t + εi,t+1, (14)

where NCSKEWi,t+1 is the negative conditional return skewness of firm i over the period from

July of year t to June of year t+1. DUV OLi,t+1 is the “down-to-up volatility” of firm i over the

period from July of year t to June of year t+1. The key independent variable is ln(CEIi,t), the

natural log of firm-level carbon emissions intensity in June of each year t, for firms with a fiscal

year ending in year t − 1. Controlk,t denotes control variables, including the one-year-lagged

dependent variable, DTURN, SIGMA, RET, firm size, the book-to-market ratio, return-on-

assets, and leverage, specified in the Appendix. We also include industry and year fixed effects

in the regression and cluster standard errors at the firm level. Table 10 reports the regression

results and shows that the coefficients of ln(CEIi,t) are significantly positive, 0.0170 (t-stat.

= 2.25) and 0.0096 (t-stat. = 2.08), respectively, for NCSKEW and DUVOL, indicating that

firms with high carbon emissions intensity experience elevated future stock price crash risk.

Our result is consistent with Kim et al. (2014) who document that socially responsible firms

experience lower future stock price crash risk.

5.2.6 Stock-level evidence

As both bonds and equities are claims to the same firm’s underlying assets and cash flows,

the investor underreaction hypothesis would naturally predict a low carbon alpha in the stock

market as well. We thus conduct portfolio analysis for stocks in Table A.10 of the Online

Appendix. As our corporate bond sample is only a subset of the stock sample, we separately

examine the return predictability of CEI among all stocks and stocks with bonds.

Panel A reports the excess returns and alphas for quintile portfolios sorted on firm-level CEI

over the period from July 2006 to June 2019. The asset pricing models we use include FFCPS

model,42 Fama and French (2015) 5-factor model, and the Hou, Xue, and Zhang (2015) Q-

factor models. Consistent with our bond-level results, we find the low-CEI stocks significantly

42The Fama and French (1993) plus the Carhart (1997) momentum factor and Pastor and Stambaugh (2003)
liquidity factor.
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outperform high-CEI stocks, with a monthly alpha for the long-short portfolio ranging from

0.25% to 0.53%. The outperformance of low-CEI stocks is especially pronounced among stocks

with corporate bonds, which is consistent with our evidence of a stronger low carbon alpha for

high-leverage firms. In Panel B, we conduct portfolio analysis over the subperiod of January

2010 to June 2019. Consistent with In, Park, and Monk (2019), we find the low carbon alpha is

larger and more significant over this period compared with the full sample results. Overall, we

find consistent evidence across stocks and bonds that investors underreact to the predictability

of carbon intensity for firm fundamentals.43

6 Conclusion

Despite the immense literature on the effects of climate risk on the expected returns of equities,

far fewer studies are devoted to understanding the role of climate risk in the expected returns of

corporate bonds. Our paper is one of the first in the literature to explore whether a firm’s carbon

risk, as measured by its carbon emissions intensity, is priced in the cross-section of corporate

bond returns. Contrary to the “carbon risk premium” hypothesis, we find that bonds issued

by firms with higher carbon intensity earn significantly lower future returns. The effect cannot

be explained by a comprehensive list of bond and firm characteristics or by exposure to known

stock or bond risk factors.

Examining the sources of “low carbon alpha”, we find the underperformance of bonds issued

by carbon-intensive firms cannot be fully explained by divestment from institutional investors.

Instead, our evidence is most consistent with investors underreacting to carbon risk in the

corporate bond market, as carbon intensity is predictive of lower future cash flow surprises,

43Our stock-level results in Table A.10 differ from Bolton and Kacperczyk (2021) who document that firms
with higher carbon emission levels earn higher stock returns, but are consistent with the findings in In, Park,
and Monk, 2019 and Cheema-Fox et al. (2019). The differences in the findings between Bolton and Kacperczyk
(2021) and ours are two-fold. First, the asset pricing implications are different. Bolton and Kacperczyk (2021)
examine the contemporaneous relation between raw carbon emissions and stock returns, while we investigate the
predictive power of carbon intensity for future expected stock returns. Second, the main measures are different.
While they use the level of carbon emissions as the main measure, we focus on the carbon emission intensity
(CEI), a more commonly used measure based on industry standards (e.g., MSCI Low Carbon Indexes) and a
better metric to capture firms’ exposure to climate policy risk (see Ilhan, Sautner, and Vilkov, 2021; In, Park,
and Monk, 2019). We are able to replicate the main findings in Bolton and Kacperczyk (2021) when exactly
following their approach using similar measures and methodology.
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deteriorating firm creditworthiness, more environment incidents, and elevated crash risk. Given

the growing bond issuance by corporations and increasing flows to bond funds by households,

the inefficient pricing of carbon risk in the corporate bond market has important consequences

for climate mitigation policies and financial stability.
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Appendix: Variable Definitions

Variables Description

Carbon Emission Variables

Carbon emissions intensity (scope 1) Scope 1 emissions divided by the firm’s revenue (unit: tCO2e/$million). Scope 1 emissions are greenhouse gas emissions
generated from burning fossil fuels and production processes which are owned or controlled by the company (unit:
tCO2e).

Carbon emissions intensity (scope 2) Scope 2 emissions divided by the firm’s revenue (unit: tCO2e/$million). Scope 2 emissions are greenhouse gas emissions
from consumption of purchased electricity, heat or steam by the company (unit: tCO2e).

Carbon emissions intensity (scope 3) Scope 3 emissions dvided by the firm’s revenue (unit: tCO2e/$million). Scope 3 emissions are other indirect emissions
from the production of purchased materials, product use, waste disposal, outsourced activities, etc. (unit: tCO2e).

ln(CEI) The natural logarithm of carbon emissions intensity (scope 1).

Corporate Bond Variables

βBond The bond market beta is estimated for each bond from the time-series regressions of individual bond excess returns
on the bond market excess returns (MKTBond) using a 36-month rolling window. MKTBond is the aggregate bond
market portfolio, proxied by the Merrill Lynch U.S. Aggregate Bond Index.

Downside risk Downside risk is the 5% Value-at-Risk (VaR) of corporate bond return, defined as the second lowest monthly return
observation over the past 36 months. The original VaR measure is multiplied by −1 so that a higher VaR indicates
higher downside risk.

Illiq Bond illiquidity is computed as the autocovariance of the daily bond price changes within each month, multiplied by
−1 as defined in Bao, Pan, and Wang (2011).

Rating Raings are in conventional numerical scores, where 1 refers to an AAA rating and 21 refers to a C rating. Higher
numerical score means higher credit risk. Numerical ratings of 10 or below (BBB- or better) are considered investment
grade, and ratings of 11 or higher (BB + or worse) are labeled high yield.

∆Rating The bond credit rating in June of year t+ 1 minus the bond credit rating in June of year t.

Maturity The time to maturity of the bond in years.

Size The total amount outstanding for the bond (Size, $ billion).

Lag return The holding period bond return in the previous month t− 1.

Return(t−7:t−2) The cumulative holding period bond returns from month t− 7 to month t− 2.

βDEF The default risk beta is estimated for each bond from the time-series regressions of individual bond excess returns
on the default factor (DEF) using a 36-month rolling window, after controlling for the bond market excess return
(MKTBond) and the term factor (TERM).

βTERM The term risk beta is estimated for each bond from the time-series regressions of individual bond excess returns on the
term factor (TERM) using a 36-month rolling window, after controlling for the bond market excess return (MKTBond)
and the default factor (DEF).
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Variables Description

βUNC The macroeconomic uncertainty risk beta is estimated for each bond from the time-series regressions of individual bond
excess returns on the macroeconomic uncertainty factor (UNC) using a 36-month rolling window, after controlling for the
bond market excess return (MKTBond).

βClimate The climate change news beta is estimated for each bond from the time-series regressions of individual bond excess returns
on the climate change news index (Climate) using a 36-month rolling window, after controlling for the bond market excess
return (MKTBond).

∆INST Bond The bond institutional ownership in June of year t+ 1 minus the bond institutional ownership in June of year t. The bond
institutional ownership is the fraction of the outstanding amount held by institutions in percentage.

Firm Variables

βStock The bond market beta is estimated for each stock from the time-series regressions of individual stock excess returns on the
CRSP value-weighted market index excess returns using a 36-month rolling window.

Firm size The natural logarithm of market capitalization at the end of June.

BM The book equity for the fiscal year ending in calendar year t − 1 divided by the market equity at the end of December of
year t− 1. The book equity is the book value of stockholders’ equity, plus balance sheet deferred taxes and investment tax
credit if available, minus the book value of preferred stock.

MOM The cumulative holding period stock returns from month t − 12 to t − 2 preceding the quarterly earnings announcement
month.

Amihud Amihud Illiquidity measure, calculated as the absolute price change scaled by the volume.

VOL The stock return volatility based on the past 60 monthly returns.

IVOL The idiosyncratic volatility based on the Fama-French 3 factor model using the past 60 monthly returns.

INST Stock The number of shares held by institutions from 13F filings divided by the total number of outstanding shares at the end of
December.

Gross profit/Assets Gorss profit divided by total assets.

ROA Operating income before depreciation as a fraction of average total assets based on most recent two periods.

ROE Income before extraordinary items divided by average book value of equity.

Operating profit/Assets Operating profit divided by total assets.

Debt/Equity ratio Total debt divided by the book value of equity.

Tobin’s Q The ratio of the market value of assets (market cap of equity plus book value of debt) divided by the book value of assets.

Cash/Assets Cash holdings divided by total assets.

Age The number of years since the IPO year.

SUE The change in split-adjusted quarterly earnings per share from its value four quarters ago divided by the standard deviation
of this change over the prior eight quarters (four quarters minimum).

SURGE The change in revenue per share from its value four quarters ago divided by the standard deviation of this change over the
prior eight quarters (four quarters minimum).
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Variables Description

CAR(−2,+1) Four-day cumulative abnormal return from two days before to one day after the earning announcement day (day 0), where daily
abnormal return is the difference between daily stock return and the CRSP value-weighted market index return.

R&D R&D expenditures divided by sales.

Investment The annual growth in total assets.

OCF The operating cash flows divided by lagged total assets.

∆O Score The one-year ahead change of O-Score relative to the most recent quarter before June of year t.

Incidents The sum of all positive changes in the RepRisk Index for a firm from June of year t to June of year t + 1. A higher index
number indicates a higher ESG risk exposure and each positive change represents an ESG incident. To ensure we capture a firm’s
environmental incidents rather than the S and G aspects of the RepRisk Index, we require the percentage of environmental issues
used to compute the RepRisk Index is greater than 50%.

NCSKEW The negative of the third moment of firm-specific weekly returns for each firm sample year and divided by the standard deviation
of firm-specific weekly returns raised to the third power.

DTURN The average monthly share turnover form July of year t− 1 to June of year t minus the average monthly share turnover from July
of year t2 to June of year t1, where the monthly share turnover is calculated as the monthly trading volume divided by the total
number of shares outstanding during the month.

SIGMA The standard deviation of firm-specific weekly returns from July of year t1 to June of year t.

RET The average firm-specific weekly returns from July of year t1 to June of year t.
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Figure 1. Carbon Emissions Intensity

Panel A: Average carbon emissions intensity by Fama-French 12 industries

Panel B: Average carbon emissions intensity over time

The top panel of the figure depicts the average carbon emissions intensity (CEI) by Fama-French 12
industries based on the Trucost dataset. The bottom panel depicts the average CEI over time. The
sample period is from 2005 to 2017.
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Figure 2. Cross and Within-Industry Variation in Carbon Emissions Intensity

Panel A: Cross-industry standard deviation in carbon emissions intensity

Panel B: Average within-industry standard deviation in carbon emissions intensity

The figure depicts the cross-industry (within-industry) standard deviations in carbon emissions intensity
over time based on the Trucost dataset. The sample period is from 2005 to 2017.
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Table 1 Summary Statistics

Panel A reports the number of bond-month observations, the cross-sectional mean, median, standard deviation and percentiles for corporate bond monthly
returns and bond characteristics including credit rating, time-to-maturity (Maturity, year), amount outstanding (Size, $ billion), bond market beta (βBond),
downside risk (5% Value-at-Risk, VaR), and illiquidity (Illiq). Carbon emissions intensity (CEI) is defined as the firm-level scope 1 greenhouse gas emissions
in CO2 equivalents generated from burning fossil fuels and production processes which are owned or controlled by the company, divided by the total revenue
of the firm in millions of dollars. Ratings are in conventional numerical scores, where 1 refers to an AAA rating and 21 refers to a C rating. Higher
numerical score means higher credit risk. Numerical ratings of 10 or below (BBB- or better) are considered investment grade. βBond is the individual
bond exposure to the aggregate bond market portfolio (MKTBond), proxied by the Merrill Lynch U.S. Aggregate Bond Index. Downside risk is the 5%
Value-at-Risk (VaR) of corporate bond return, defined as the second lowest monthly return observation over the past 36 months. The original VaR measure
is multiplied by −1 so that a higher VaR indicates higher downside risk. Bond illiquidity is computed as the autocovariance of the daily price changes
within each month, multiplied by −1. Panel B reports the time-series average of the cross-sectional correlations. The sample period is from July 2006 to
June 2019.

Panel A: Cross-sectional statistics over the sample period of July 2006 – June 2019

Percentiles

N Mean Median SD 1st 5th 25th 75th 95th 99th

Bond return (%) 1,127,558 0.69 0.48 3.93 -8.41 -4.05 -0.72 1.85 6.15 11.95
Carbon emissions intensity (CEI) 736,904 444.91 10.89 1205.74 0.31 0.42 1.17 89.16 3813.54 5320.97
Credit rating (Rating) 1,113,082 8.46 7.82 3.79 1.77 2.84 5.77 10.43 15.90 18.58
Time-to-maturity (Maturity, year) 1,181,362 9.74 6.43 9.36 1.11 1.51 3.55 12.79 27.46 32.34
Amount out (Size, $billion) 1,181,362 0.48 0.34 0.56 0.00 0.01 0.12 0.62 1.58 2.76
Bond market beta (βBond) 667,060 1.06 0.86 0.90 -0.39 0.10 0.50 1.40 2.77 4.05
Downside risk (5% VaR) 660,335 6.28 4.91 5.04 0.84 1.42 3.01 7.98 15.72 24.89
Illiq 769,028 1.36 0.28 3.82 -0.78 -0.16 0.05 1.15 6.59 15.59

Panel B: Average cross-sectional correlations

CEI Rating Maturity Size βBond VaR Illiq

CEI 1 0.009 0.091 -0.078 -0.001 -0.026 0.009
Rating 1 -0.135 -0.055 0.112 0.436 0.096
Maturity 1 -0.009 0.365 0.219 0.094
Size 1 0.063 -0.108 -0.144
βBond 1 0.414 0.092
VaR 1 0.251
Illiq 1
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Table 2 Univariate Portfolios of Corporate Bonds Sorted by the Firm-Level
Carbon Emissions Intensity (CEI)

In Panel A, we form quintile portfolios of corporate bonds based on the firm-level carbon emissions intensity
(CEI) in June of each year t for firms with fiscal year ending in year t−1. The portfolio returns are calculated for
July of year t to June of year t+ 1 and then rebalanced. CEI is defined as the firm-level greenhouse gas emission
in CO2 equivalents divided by the total revenue of the firm in millions of dollars. Panel A reports results for the
scope 1 carbon emission, defined as greenhouse gas emissions generated from burning fossil fuels and production
processes which are owned or controlled by the company. The portfolios are value-weighted using amounts
outstanding as weights. Since carbon emission levels intrinsically vary across industries, we form portfolios within
each of the 12 Fama-French industries to control for the industry effect and the calculate the average portfolio
returns across industries. Quintile 1 is the portfolio with the lowest CEI and Quintile 5 is the portfolio with the
highest CEI. The table reports the average CEI, the next-month average excess return, the 5-factor alpha from
stock market factors, the 4-factor alpha from bond market factors, and the 9-factor alpha for each quintile. The
last row shows the differences monthly average returns and the differences in alphas with respect to the factor
models. The 5-factor model with stock market factors includes the excess stock market return (MKTStock), the
size factor (SMB), the book-to-market factor (HML), the stock momentum factor (MOM), and the liquidity risk
factor (LIQ). The 4-factor model with bond market factors includes the excess bond market return (MKTBond),
the downside risk factor (DRF), the credit risk factor (CRF), and the liquidity risk factor (LRF). The 9-factor
model combines 5 stock market factors and 4 bond market factors. The average returns and alphas are defined in
monthly percentage terms. Panel B reports the average bond portfolio characteristics including the bond market
beta (βBond), downside risk (5% Value-at-Risk, VaR), illiquidity (Illiq), credit rating (Rating), time-to-maturity
(Maturity, years), and amount outstanding (Size, in $billion) for each quintile. Panel C reports the average
firm-level characteristics including stock market beta (βStock), Firm size (natural log of market equity), BM
(book-to-market), MOM (Returnt−12:t−2), Amihud measure of illiquidity, VOL (stock return volatility based on
the past 60 monthly returns), IVOL (idiosyncratic volatility based on the Fama-French 3 factor model using the
past 60 monthly returns), and institutional ownership (INST Stock, %). Panel D reports the average firm-level
fundamental characteristics including Gross profit/Assets, ROA (return-on-assets), ROE (return-on-equity),
Operating profit/Assets, Debt/Equity ratio, Debt/Assets ratio, Tobin’s Q, Cash/Assets ratio, and firm age.
Newey-West adjusted t-statistics are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%,
5%, and 1% levels, respectively. The sample period is from July 2006 to June 2019.

Panel A: Quintile portfolios of corporate bonds sorted by firm-level CEI

Quintiles Average Average 5-factor stock 4-factor bond 9-factor
CEI return alpha alpha alpha

Low 36.75 0.37 0.26 0.11 0.11
(3.66) (2.42) (2.38) (2.62)

2 153.18 0.35 0.24 0.03 0.04
(3.42) (2.31) (0.77) (1.00)

3 333.77 0.33 0.22 0.05 0.06
(3.42) (2.29) (1.08) (1.55)

4 518.59 0.31 0.21 0.03 0.03
(3.28) (2.14) (0.65) (0.68)

High 1127.34 0.23 0.13 -0.05 -0.04
(2.51) (1.30) (-0.69) (-0.84)

High − Low -0.14*** -0.13*** -0.16*** -0.15***
(-2.62) (-3.13) (-2.98) (-3.47)
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Table 2 (Continued)

Panel B: Average bond portfolio characteristics

βBond Downside Risk (5% VaR) Illiq Rating Maturity Size

Low 0.98 4.77 0.90 7.61 9.25 0.65
2 1.06 5.03 0.89 8.27 8.99 0.60
3 1.01 4.48 0.91 8.02 8.66 0.58
4 0.86 4.38 0.91 7.69 9.24 0.59

High 1.14 5.20 1.17 9.01 8.64 0.51

High − Low 0.15** 0.42*** 0.27*** 1.41*** -0.61*** -0.13***
(2.14) (3.56) (4.14) (13.15) (-8.67) (-10.24)

Panel C: Average firm characteristics

βStock Firm size BM MOM Amihud VOL (%) IVOL (%) INST Stock (%)

Low 1.11 23.95 0.54 0.10 0.16 8.22 6.35 70.42%
2 1.10 23.77 0.57 0.11 0.16 8.58 6.76 70.72%
3 1.09 23.94 0.53 0.11 0.15 8.09 6.19 70.54%
4 1.09 23.99 0.58 0.11 0.16 8.18 6.28 70.47%

High 1.19 23.38 0.62 0.11 0.21 9.09 7.07 74.78%

High − Low 0.09*** -0.56*** 0.08*** 0.01 0.05*** 0.88*** 0.72*** 4.36***
(3.29) (-9.34) (4.93) (0.60) (3.48) (5.95) (5.83) (7.55)

Panel D: Average firm characteristics (accounting fundamentals)

Gross profit/Assets ROA ROE Operating profit/Assets Debt/Equity ratio Debt/Assets Tobin’s Q Cash/Assets Age (yr)

Low 0.30 0.14 0.18 0.13 3.04 0.68 1.90 0.14 37.68
2 0.25 0.13 0.14 0.11 3.09 0.69 1.62 0.12 40.31
3 0.26 0.13 0.16 0.12 3.40 0.71 1.67 0.09 45.16
4 0.23 0.13 0.15 0.12 3.16 0.67 1.64 0.09 45.06

High 0.22 0.13 0.12 0.11 2.39 0.66 1.64 0.09 39.48

High − Low -0.07*** -0.02*** -0.06*** -0.02*** -0.65*** -0.02*** -0.26*** -0.05*** 1.80***
(-16.70) (-3.84) (-7.76) (-4.66) (-4.06) (-3.45) (-8.65) (-8.99) (3.66)
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Table 3 Fama-MacBeth Cross-Sectional Regressions

This table reports the average intercept and slope coefficients from the Fama and MacBeth (1973) cross-sectional
regressions of future corporate bond excess returns on the logarithm of carbon emissions intensity (CEI), with
and without controls. The dependent variable is the corporate bond excess return from July of year t to June of
year t+ 1 and key independent variable independent variable ln(CEI) is based on the firm-level carbon emissions
intensity in June of each year t for firms with fiscal year ending in year t−1. Control variables include bond market
beta (βBond), bond characteristics (ratings, maturity, size), downside risk, bond-level illiquidity, and one-month
lagged returns. Ratings are in conventional numerical scores, where 1 refers to an AAA rating and 21 refers to a
C rating. A higher numerical score implies higher credit risk. Time-to-maturity is defined in terms of years and
Size is defined in terms of $billion. Illiq is the bond-level illiquidity computed as the autocovariance of the daily
price changes within each month. We also control for systematic risk betas such as the default beta (βDEF ), term
beta (βTERM ), macroeconomic uncertainty beta (βUNC), and climate change news beta (βClimate). Newey-West
(1987) t-statistics are reported in parentheses to determine the statistical significance of the average intercept
and slope coefficients. The last row reports the average adjusted R2 values and we control for the Fama-French
12 industry fixed effects in all specifications. Numbers in bold denote statistical significance at the 5% level or
below.

(1) (2) (3) (4)
Univariate Controlling for Controlling for systematic Controlling for

bond characteristics and climate change news betas all variables

ln(CEI) -0.046 -0.042 -0.038 -0.036
(-2.76) (-2.59) (-2.51) (-2.30)

βBond 0.225 0.244
(3.17) (3.77)

Downside risk (5% VaR) 0.105 0.091
(3.18) (3.54)

Illiq 0.002 0.003
(0.20) (0.34)

Rating 0.004 0.011
(0.27) (0.99)

Maturity 0.011 0.008
(2.50) (2.07)

Size 0.006 0.007
(0.22) (0.27)

Lag return -0.117 -0.129
(-5.00) (-5.57)

βDEF -0.259 -0.064
(-1.80) (-0.87)

βTERM 0.407 0.151
(2.29) (1.41)

βUNC -0.151 -0.159
(-2.37) (-2.63)

βClimate -0.873 0.090
(-0.89) (0.11)

Intercept 0.251 0.276 0.260 0.208
(1.86) (1.94) (2.13) (2.09)

Industry Fixed Effects YES YES YES YES

Adj. R2 0.045 0.248 0.122 0.270
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Table 4 Robustness Checks

This table conducts a battery of robustness checks. Panel A reports results using different categories of a firm’s carbon emissions based on the scope
2 emissions scaled by total revenue, as well as scope 1 and scope 2 emissions combined, as the main measure of CEI. Panel B investigates whether the
main results remain intact when excluding the most carbon-intensive industries such as the energy, chemicals, and utilities industries. Panel C conducts
firm-level analyses and uses three different approaches to control for the effect of multiple bonds issued by the same firm by (1) forming the value-weighted
average of the bond returns across the same firm, (2) picking one bond of the largest size, and (3) picking the most liquid bond as representative of the
firm and replicate the portfolio-level analysis using this firm-level data set. Panel D conducts subperiod analyses for the two subperiods based on a six-year
interval.

Panel A: Quintile portfolios of corporate bonds sorted by firm-level scope 2 carbon emissions and scope 1 and 2 combined

Scope 2 carbon emissions only Scope 1 and 2 carbon emissions combined (Total Scope)

Average 5-factor stock 4-factor bond 9-factor Average 5-factor stock 4-factor bond 9-factor
return alpha alpha alpha return alpha alpha alpha

Low 0.36 0.26 0.09 0.08 Low 0.36 0.26 0.09 0.08
(3.77) (2.49) (2.41) (2.56) (3.77) (2.51) (2.41) (2.53)

2 0.37 0.26 0.08 0.08 2 0.36 0.26 0.06 0.07
(3.81) (2.58) (2.65) (3.09) (3.65) (2.51) (1.61) (2.24)

3 0.34 0.24 0.07 0.07 3 0.31 0.19 0.03 0.04
(3.68) (2.59) (1.75) (1.94) (3.09) (1.88) (0.71) (1.06)

4 0.34 0.23 0.00 0.01 4 0.36 0.26 0.07 0.06
(3.30) (2.29) (0.05) (0.32) (3.96) (2.96) (1.95) (1.92)

High 0.23 0.08 -0.07 -0.06 High 0.25 0.11 -0.07 -0.07
(1.94) (0.67) (-0.94) (-0.97) (2.23) (0.98) (-1.12) (-1.23)

High − Low -0.12* -0.18*** -0.15*** -0.15*** High − Low -0.11** -0.15*** -0.15*** -0.16***
(-1.90) (-2.87) (-2.93) (-3.04) (-2.17) (-3.15) (-3.08) (-3.23)

Panel B: Excluding the most carbon-intensive industries

Excluding energy industry only Excluding chemicals industry only Excluding utilities industry only Excluding all three industries

Average 9-factor Average 9-factor Average 9-factor Average 9-factor
return alpha return alpha return alpha return alpha

Low 0.37 0.09 0.37 0.08 0.37 0.09 0.36 0.08
(3.63) (2.72) (3.56) (2.33) (3.63) (2.63) (3.44) (2.34)

2 0.37 0.09 0.34 0.03 0.34 0.03 0.36 0.08
(3.86) (2.89) (3.27) (0.73) (3.36) (0.88) (3.65) (2.49)

3 0.35 0.09 0.32 0.04 0.32 0.05 0.32 0.06
(3.59) (2.39) (3.24) (1.16) (3.35) (1.29) (3.29) (1.61)

4 0.31 0.03 0.30 0.03 0.31 0.02 0.29 0.03
(3.29) (0.87) (3.21) (0.72) (3.22) (0.52) (3.14) (0.77)

High 0.28 -0.00 0.25 -0.06 0.25 -0.06 0.25 -0.04
(2.79) (-0.11) (2.33) (-1.21) (2.32) (-1.16) (2.38) (-0.85)

High − Low -0.09** -0.09*** -0.12*** -0.14*** -0.12** -0.14*** -0.11** -0.12***
(-2.17) (-2.78) (-2.87) (-3.57) (-2.58) (-3.59) (-2.39) (-3.04)
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Table 4 (Continued)

Panel C: Firm-level analysis

Firm-level bond returns Largest bond Most liquid bond

Average 9-factor Average 9-factor Average 9-factor
return alpha return alpha return alpha

Low 0.39 0.13 0.38 0.10 0.38 0.11
(4.03) (2.89) (3.80) (3.02) (4.05) (3.00)

2 0.37 0.08 0.33 -0.00 0.33 0.03
(3.77) (1.82) (2.92) (-0.06) (3.05) (0.53)

3 0.28 0.02 0.35 0.06 0.25 -0.04
(2.90) (0.42) (3.55) (1.30) (2.39) (-0.71)

4 0.33 0.06 0.31 0.00 0.32 0.03
(3.46) (1.64) (3.05) (0.01) (3.32) (0.61)

High 0.29 0.01 0.24 -0.05 0.25 -0.01
(2.92) (0.11) (2.20) (-1.01) (2.32) (-0.24)

High − Low -0.10*** -0.12*** -0.15** -0.15*** -0.13** -0.12**
(-2.78) (-2.93) (-2.44) (-3.43) (-2.50) (-2.42)

Panel D: Subperiod analysis

Excluding crisis period (2008 – 2009) 1st Subperiod: July 2006 to June 2013 2nd subperiod: July 2013 to June 2019

Average 9-factor Average 9-factor Average 9-factor
return alpha return alpha return alpha

Low 0.35 0.06 0.40 0.17 0.34 0.10
(4.48) (2.21) (2.42) (2.11) (3.09) (1.87)

2 0.31 0.01 0.42 0.13 0.26 -0.08
(3.97) (0.24) (2.65) (2.33) (2.20) (-1.92)

3 0.32 0.03 0.40 0.15 0.26 -0.05
(4.23) (1.00) (2.50) (2.47) (2.52) (-1.67)

4 0.33 0.05 0.32 0.03 0.31 -0.00
(4.36) (1.62) (2.02) (0.61) (2.98) (-0.08)

High 0.21 -0.06 0.22 0.01 0.23 -0.01
(3.24) (-1.53) (1.59) (0.07) (2.22) (-1.87)

High − Low -0.14** -0.12*** -0.18** -0.16** -0.11* -0.10**
(-2.21) (-3.17) (-2.06) (-2.46) (-1.96) (-2.48)
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Table 5 Carbon Emissions Intensity, Institutional Ownership, and Corporate
Bond Returns

Panel A of this table reports the average intercept and slope coefficients from the Fama and MacBeth (1973) cross-
sectional regressions of changes in corporate bonds’ institutional ownership on firms’ carbon emissions intensity.
The dependent variable is the change in bonds’ institutional ownership (∆INST Bond), defined as the institutional
ownership in June of year t+ 1 minus the institutional ownership in June of year t. For a given bond i in month
t, the measure of institutional ownership is defined as:

INSTit =
∑
j

(
Holdingijt

OutstandingAmtit

)
=
∑
j

hjt,

where Holdingijt is the par amount holdings of institution j on bond i, OutstandingAmtit is bond i’s outstanding
amount, and hjt is the fraction of the outstanding amount held by institution j, in percentage. The key
independent variable is the logarithm of firm-level carbon emissions intensity in June of each year t for firms
with fiscal year ending in year t − 1. Control variables include bond market beta (βBond), bond characteristics
(ratings, maturity, size), downside risk, bond-level illiquidity (Illiq), and past six-month cumulative bond returns
(Returnt−7:t−2). We also control for systematic risk betas such as the default beta (βDEF ), term beta (βTERM ),
macroeconomic uncertainty beta (βUNC), and climate change news beta (βClimate). To interpret their economic
significance, all the independent variables in Panel A are standardized cross-sectionally to a mean of zero and
standard deviation of one. Panel B replicates Table 3 by including additional controls of the contemporaneous
changes in bonds’ institutional ownership (∆INST Bond). The dependent variable in Panel B is the corporate
bond excess return from July of year t to June of year t + 1. Newey-West (1987) t-statistics are reported in
parentheses to determine the statistical significance of the average intercept and slope coefficients. The last
row reports the average adjusted R2 values and we control for the Fama-French 12 industry fixed effects in all
specifications. Numbers in bold denote statistical significance at the 5% level or below.

Panel A: Carbon emission intensity and changes in institutional ownership

(1) (2) (3) (4)
Dep.var = ∆INST Bond Univariate Controlling for Controlling for systematic Controlling for

bond characteristics and climate change news betas all variables

ln(CEI) -0.471 -0.211 -0.489 -0.226
(-3.66) (-2.65) (-4.51) (-2.42)

βBond 0.312 0.276
(5.18) (3.49)

Downside risk (5% VaR) -0.018 -0.013
(-0.19) (-0.14)

Illiq 0.402 0.355
(2.29) (2.29)

Rating -0.725 -0.693
(-4.60) (-4.75)

Maturity 0.379 0.343
(3.95) (3.76)

Size -0.146 -0.119
(-1.91) (-1.70)

Return(t−7:t−2) 4.744 4.738
(10.97) (10.97)

βDEF -0.144 -0.089
(-0.72) (-0.55)

βTERM 0.396 0.125
(1.63) (0.65)

βUNC -0.328 -0.189
(-2.34) (-1.61)

βClimate -0.126 -0.095
(-1.37) (-1.50)

Intercept -2.224 -2.098 -2.583 -2.112
(-4.12) (-3.70) (-4.41) (-3.80)

Industry Fixed Effects YES YES YES YES

Adj. R2 0.016 0.277 0.033 0.280
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Table 5 (Continued)

Panel B: Carbon emissions intensity, changes in institutional ownership, and bond returns

(1) (2) (3) (4)
Dep.var = Returnt+1:t+12 Univariate Controlling for Controlling for systematic Controlling for

bond characteristics and eclimate risk beta all variables

ln(CEI) -0.039 -0.036 -0.031 -0.027
(-2.59) (-2.03) (-2.35) (-2.15)

∆INST Bond 0.125 0.134 0.042 0.122
(0.60) (0.79) (0.21) (0.73)

βBond 0.066 0.148
(1.12) (2.32)

Downside risk (5% VaR) 0.046 0.040
(2.41) (2.09)

Illiq -0.001 -0.001
(-0.13) (-0.10)

Rating 0.005 0.004
(0.23) (0.24)

Maturity 0.003 0.002
(0.72) (0.51)

Size 0.032 0.026
(0.79) (0.64)

Lag return -0.197 -0.206
(-6.34) (-6.86)

βDEF -0.168 -0.012
(-1.07) (-0.23)

βTERM 0.103 -0.017
(0.66) (-0.18)

βUNC -0.258 -0.217
(-2.43) (-1.45)

βClimate -0.035 0.537
(-0.03) (0.56)

Intercept 0.153 0.311 0.260 0.208
(0.72) (1.60) (2.13) (2.09)

Industry Fixed Effects YES YES YES YES

Adj. R2 0.046 0.256 0.122 0.270
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Table 6 Subsample Analyses: Univariate Portfolios of Corporate Bonds Sorted by the Firm-Level Carbon
Emissions Intensity (CEI)

This table replicates Table 2 for (1) large and small bonds based on the median issuance size, (2) investment-grade and non-investment-grade bonds,
(3) short- and long-maturity bonds based on the median time-to-maturity, and (4) liquid and illiquid bonds based on the median bond-level illiquidity,
respectively.

Panel A: Large bonds versus small bonds Panel B: Investment-grade versus non-investment-grade bonds

Size > SizeMedian Size ≤ SizeMedian Investment-grade Non-investment-grade

Average 9-factor Average 9-factor Average 9-factor Average 9-factor
return alpha return alpha return alpha return alpha

Low 0.32 0.06 0.39 0.14 Low 0.37 0.08 0.41 0.25
(3.35) (1.62) (3.62) (2.05) (3.63) (1.99) (2.58) (2.19)

2 0.38 0.04 0.33 0.09 2 0.36 0.06 0.44 0.13
(3.91) (0.81) (3.12) (1.90) (3.86) (1.62) (2.89) (1.27)

3 0.29 0.08 0.36 0.02 3 0.35 0.09 0.30 -0.05
(3.07) (1.52) (3.54) (0.42) (3.87) (2.76) (1.73) (-0.44)

4 0.37 0.02 0.29 0.10 4 0.35 0.06 0.34 0.06
(4.03) (0.38) (2.74) (2.75) (3.91) (1.65) (2.29) (0.78)

High 0.22 -0.09 0.25 -0.08 High 0.25 -0.02 0.14 -0.11
(2.24) (-0.86) (1.94) (-1.37) (1.98) (-0.64) (0.82) (-1.04)

High − Low -0.10** -0.15** -0.15*** -0.22*** High − Low -0.12** -0.10** -0.27*** -0.36***
(-2.21) (-2.00) (-2.81) (-3.94) (-2.17) (-2.01) (-3.54) (-4.08)

Panel C: Short maturity versus long maturity bonds Panel D: Liquid bonds versus Illiquid bonds

1 yr < Maturity ≤ 6 yr Maturity > 6 yr Illiq ≤ IlliqMedian Illiq > IlliqMedian

Average 9-factor Average 9-factor Average 9-factor Average 9-factor
return alpha return alpha return alpha return alpha

Low 0.26 0.12 0.47 0.13 Low 0.37 0.11 0.43 0.04
(3.97) (3.79) (3.13) (2.44) (4.07) (4.22) (3.27) (0.79)

2 0.25 0.09 0.47 0.02 2 0.29 0.03 0.48 0.09
(3.75) (2.23) (3.16) (0.32) (3.14) (0.65) (3.89) (1.89)

3 0.21 0.08 0.44 -0.00 3 0.32 0.09 0.34 -0.04
(3.31) (2.25) (2.99) (-0.05) (3.60) (2.58) (2.75) (-0.61)

4 0.20 0.08 0.40 -0.03 4 0.33 0.09 0.34 -0.03
(3.63) (2.95) (2.63) (-0.46) (4.34) (2.79) (2.45) (-0.56)

High 0.17 -0.01 0.31 -0.10 High 0.28 0.03 0.21 -0.15
(2.14) (-0.28) (2.08) (-1.62) (3.42) (0.83) (1.65) (-2.40)

High − Low -0.10** -0.13*** -0.15** -0.23*** High − Low -0.09** -0.08** -0.22*** -0.20***
(-2.34) (-3.02) (-2.56) (-3.06) (-2.06) (-2.21) (-3.28) (-3.54)
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Table 7 Carbon Emissions Intensity and Cash Flow Surprises

This table reports the panel regression of earnings/revenue surprise on firms’ carbon emission intensity. The
dependent variable are earnings surprise (SUE), revenue surprise (SURGE), and earnings announcement return
CAR(−2, +1). SUE is defined as the change in split-adjusted quarterly earnings per share from its value
four quarters ago divided by the standard deviation of this change over the prior eight quarters (four quarters
minimum). SURGE is defined as the change in revenue per share from its value four quarters ago divided by the
standard deviation of this change over the prior eight quarters (four quarters minimum). CAR(−2, +1) is defined
as four-day cumulative abnormal return from two days before to one day after the earning announcement day
(day 0), where daily abnormal return is the difference between daily stock return and the CRSP value-weighted
market index return. The independent variable is ln(CEI), which is defined as the nature logarithm of carbon
emission intensity (scope 1) in the fiscal year ending in calendar year t − 1. Firm size is defined as the natural
logarithm of market capitalization at the end of June in each year. BM is the book equity for the fiscal year
ending in calendar year t − 1 divided by the market equity at the end of December of year t − 1. Book value
of equity equals the value of stockholders’ equity, plus deferred taxes and investment tax credits, and minus the
book value of preferred stock. ROE is defined as income before extraordinary items in the fiscal year ending in
calendar year t− 1 divided by average book value of equity in the fiscal year ending in calendar year t− 1. R&D
is defined as R&D expenditures in the fiscal year ending in calendar year t− 1 divided by sales in calendar year
t− 1. Investment is defined as the annual growth in total assets in fiscal year ending in calendar year t− 1. OCF
is defined as operating cash flows in the fiscal year ending in calendar year t − 1 divided by lagged total assets.
INST Stock is defined as the sum of shares held by institutions from 13F filings at the end of December of year
t−1. Momentum (MOM) is defined as the cumulative holding period returns from month t−12 to t−2 preceding
the quarterly earnings announcement month. Industry is based on Fama-French 12 industry categories. The unit
of analysis is at firm-quarter level. All variables are winsorized at 2.5% level, except for Firm size and MOM.
Numbers in parentheses are t-statistics based on standard errors clustered by firm level. ***, **, and * represent
significance levels of 1%, 5%, and 10%, respectively.

Variables SUE SURGE CAR (−2, +1)

(1) (2) (3) (4) (5) (6)

ln (CEI) -0.0177*** -0.0128** -0.0446*** -0.0262*** -0.0004*** -0.0005**
(-5.48) (-2.19) (-12.29) (-4.20) (-2.60) (-1.99)

Dependent variablet-1 0.3259*** 0.3237*** 0.7441*** 0.7394*** -0.0089 -0.0092
(29.91) (30.14) (102.15) (100.99) (-1.14) (-1.19)

Dependent variablet-4 -0.1881*** -0.1893*** -0.0398*** -0.0444*** -0.0043 -0.0046
(-22.05) (-22.43) (-8.28) (-9.13) (-0.61) (-0.65)

Firm size 0.0402*** 0.0410*** 0.0411*** 0.0382*** -0.0005 -0.0004
(4.85) (4.96) (5.43) (5.08) (-1.61) (-1.28)

BM -0.2813*** -0.2655*** -0.1855*** -0.1815*** -0.0013 -0.0009
(-12.70) (-11.38) (-7.17) (-6.62) (-0.91) (-0.62)

ROE -0.3164*** -0.3568*** 0.2154*** 0.2580*** 0.0027 0.0012
(-5.39) (-5.96) (3.25) (3.85) (0.81) (0.35)

R&D -1.1300*** -0.9871*** -0.7490*** -0.7030* 0.0169 0.0289*
(-4.49) (-2.97) (-2.74) (-1.91) (1.44) (1.75)

Investment -0.0065 0.0001 -0.1788*** -0.1644*** -0.0053** -0.0053**
(-0.14) (0.00) (-3.74) (-3.35) (-2.18) (-2.15)

OCF 0.5771*** 0.7639*** 0.7893*** 0.7867*** -0.0003 0.0040
(3.08) (3.90) (4.32) (3.95) (-0.05) (0.50)

INST Stock 0.1320*** 0.1333*** 0.2007*** 0.1745*** 0.0050** 0.0053**
(3.08) (3.09) (5.02) (4.35) (2.34) (2.43)

MOM 0.4454*** 0.4397*** 0.2733*** 0.2757*** -0.0025* -0.0026**
(7.40) (7.37) (7.09) (6.95) (-1.94) (-2.01)

Constant -0.6590*** -0.7187*** -0.6860*** -0.6589*** 0.0103 0.0077
(-3.30) (-3.55) (-3.83) (-3.63) (1.29) (0.94)

Industry FEs NO YES NO YES NO YES
Quarter FEs YES YES YES YES YES YES
Adj. R2 0.1970 0.1990 0.6270 0.6290 0.0074 0.0075
Observations 28,691 28,691 28,654 28,654 28,666 28,666
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Table 8 Carbon Emissions Intensity and Change in Firm Creditworthiness

This table reports the panel regression of change in firm creditworthiness on firms’ carbon emission intensity. In
columns (1), the dependent variable is ∆Rating, which is defined as the bond credit rating in June of year t+ 1
minus the bond credit rating in June of year t. Ratings are in conventional numerical scores, where 1 refers to
an AAA rating and 21 refers to a C rating. A higher numerical score implies higher credit risk. In column (2),
the dependent variable is ∆O Score, defined as the one-year ahead change of O-Score relative to the most recent
quarter before June of year t. The independent variable is ln(CEI), defined as the nature logarithm of carbon
emission intensity (scope 1) in the fiscal year ending in calendar year t − 1. Firm size is defined as the natural
logarithm of market capitalization at the end of June in each year. BM is the book equity for the fiscal year
ending in calendar year t − 1 divided by the market equity at the end of December of year t − 1. Book value
of equity equals the value of stockholders’ equity, plus deferred taxes and investment tax credits, and minus the
book value of preferred stock. ROE is defined as income before extraordinary items in the fiscal year ending in
calendar year t− 1 divided by average book value of equity in the fiscal year ending in calendar year t− 1. R&D
is defined as R&D expenditures in the fiscal year ending in calendar year t− 1 divided by sales in calendar year
t− 1. Investment is defined as the annual growth in total assets in fiscal year ending in calendar year t− 1. OCF
is defined as operating cash flows in the fiscal year ending in calendar year t − 1 divided by lagged total assets.
INST Stock is defined as the sum of shares held by institutions from 13F filings at the end of December of year
t− 1. Industry is based on Fama-French 12 industry categories. The unit of analysis for ∆Rating is at bond-year
level, and for ∆O Score is at firm-year level. All variables are winsorized at 2.5% level, except for Firm size.
Numbers in parentheses are t-statistics based on standard errors clustered by bond level in column (1) and firm
level in column (2). ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

Variables ∆Rating ∆O Score

(1) (2)

ln(CEI) 0.0252*** 0.0076**
(3.02) (2.01)

Firm size 0.1515*** 0.0069
(12.96) (1.24)

BM 0.2827*** -0.0674**
(14.62) (-2.41)

ROE -0.1396*** -0.1401**
(-3.59) (-2.30)

R&D -2.1716** 0.6535***
(-2.56) (4.86)

Investment -0.0528** -0.0107
(-2.07) (-0.19)

OCF 0.6572*** -0.4574***
(5.27) (-2.87)

INST Stock -0.1526*** 0.0080
(-4.78) (0.22)

Constant -3.6909*** -0.1722
(-12.76) (-1.23)

Bond FEs YES -
Industry FEs - YES
Year FEs YES YES
Adj. R2 0.2130 0.1120
Observations 43,485 4,500
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Table 9 Carbon Emissions Intensity and Environmental Incidents

This table reports the panel regression of the frequency of environmental incidents on firms’ carbon emissions
intensity. The dependent variable is ln(1 + Incidents), defined as the nature logarithm of one plus the sum of all
positive changes in the RepRisk Index from July of year t to June of year t + 1. To ensure we capture a firm’s
environmental incidents rather than the S and G aspects of the RepRisk Index, we require the percentage of
environmental issues used to compute the RepRisk Index is greater than 50%. Ln(1 + Incidents) has a value of
zero when there is no ESG incidents in the year. The key independent variable is ln(CEI), defined as the natural
logarithm of carbon emissions intensity (scope 1) in the fiscal year ending in calendar year t − 1. Firm size is
defined as the natural logarithm of market capitalization at the end of June in each year. BM is the book equity
for the fiscal year ending in calendar year t−1 divided by the market equity at the end of December of year t−1.
Book value of equity equals the value of stockholders’ equity, plus deferred taxes and investment tax credits, and
minus the book value of preferred stock. ROE is defined as income before extraordinary items in the fiscal year
ending in calendar year t − 1 divided by average book value of equity in the fiscal year ending in calendar year
t − 1. R&D is defined as R&D expenditures in the fiscal year ending in calendar year t − 1 divided by sales in
calendar year t − 1. Investment is defined as the annual growth in total assets in fiscal year ending in calendar
year t − 1. OCF is defined as operating cash flows in the fiscal year ending in calendar year t − 1 divided by
lagged total assets. INST Stock is defined as the sum of shares held by institutions from 13F filings at the end
of December of year t − 1. The unit of analysis is at firm-year level. All variables are winsorized at 2.5% level,
except for Firm size. Numbers in parentheses are t-statistics based on standard errors clustered by firm level.
***, **, and * represent significance levels of 1%, 5%, and 10%, respectively. The sample period is from July
2007 to June 2019.

Variables ln(1+Incidents)

(1) (2)

ln(CEI) 0.1596*** 0.1255***
(15.90) (9.79)

Firm size 0.0961*** 0.0830***
(6.06) (5.96)

BM 0.2456*** 0.1224**
(5.13) (2.58)

ROE -0.0114 0.0580
(-0.11) (0.61)

R&D -1.4576*** -0.9789***
(-4.37) (-2.60)

Investment 0.0504 0.0138
(0.62) (0.17)

OCF 0.2686 -0.0999
(0.79) (-0.33)

INST Stock -0.0959 -0.0457
(-1.37) (-0.69)

Constant -2.3840*** -1.9198***
(-6.23) (-5.73)

Industry FEs NO YES
Year FEs YES YES
Adj. R2 0.1790 0.2110

Observations 6,674 6,674
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Table 10 Carbon Emissions Intensity and Stock Price Crash Risk

This table reports the panel regression of stock price crash risk on firms’ carbon emissions intensity. The dependent
variables are NCSKEW and DUV OL from July of year t to June of year t + 1. The key independent variable
is ln(CEI), defined as the natural logarithm of carbon emissions intensity (scope 1) in the fiscal year ending in
calendar year t − 1. DTURN is the average monthly share turnover form July of year t − 1 to June of year t
minus the average monthly share turnover from July of year t− 2 to June of year t− 1, where the monthly share
turnover is calculated as the monthly trading volume divided by the total number of shares outstanding during
the month. SIGMA is the standard deviation of firm-specific weekly returns from July of year t − 1 to June of
year t. RET is the average firm-specific weekly returns from July of year t − 1 to June of year t. Firm size is
defined as the natural logarithm of market capitalization at the end of June in each year. BM is the book equity
for the fiscal year ending in calendar year t−1 divided by the market equity at the end of December of year t−1.
Book value of equity equals to the value of stockholders’ equity, plus deferred taxes, and investment tax credits,
and minus the book value of preferred stock. ROA is defined as operating income before depreciation in the fiscal
year ending in calendar year t − 1 as a fraction of average total assets based between the fiscal year ending in
calendar year t− 1 and the fiscal year ending in calendar year t− 2. Leverage is the total debt as fraction of total
assets in the fiscal year ending in calendar year t− 1. Numbers in parentheses are t-statistics based on standard
errors clustered by firm level. ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

Variables NCSKEW DUVOL
(1) (2)

ln(CEI) 0.0170** 0.0096**
(2.25) (2.08)

Dependent variablet-1 0.0542*** 0.0740***
(3.54) (5.36)

DTURN 0.7836 1.7411
(0.12) (0.44)

SIGMA -0.1628 -0.0132
(-0.32) (-0.04)

RET 4.1660** 4.4990***
(2.17) (3.87)

Firm size 0.0076 0.0030
(0.96) (0.60)

BM -0.0370 -0.0253
(-1.17) (-1.27)

ROA 0.4108** 0.2857***
(2.32) (2.60)

Leverage 0.0447 0.0855**
(0.63) (2.03)

Constant -0.1971 -0.1002
(-0.99) (-0.79)

Industry FEs YES YES
Year FEs YES YES
Adj. R2 0.0143 0.0247

Observations 7,803 7,803
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Is Carbon Risk Priced in the Cross-Section

of Corporate Bond Returns?

Online Appendix

To save space in the paper, we present additional analyses in the Online Appendix. Specifically,

Table A.1 reports the year-to-year transition matrix for portfolios of firms sorted on the carbon emissions

intensity (CEI) from one- to five-year ahead and shows that CEI is highly persistent over time.

Table A.2 replicates the results in Table 2 for quintile portfolios of corporate bonds based on the firm-

level carbon emissions intensity (CEI) based on alternative factor models including the profitability and

investment factors from Fama and French (2015) and Hou, Xue, and Zhang (2015).

Table A.3 replicates the results in Table 2 based on the industry-level carbon emissions intensity (CEI)

using the Fama-French 30 industry classifications.

Table A.4 replicates the results in Table 3 by including orthogonalized measure of carbon emission

intensity (CEI⊥). Specifically, we run contemporaneous cross-sectional regressions of carbon emission

intensity (in logarithm) with respect to firm-level characteristics to investigate the unique information

in CEI, above and beyond these firm-level characteristics, including return-on-assets (ROA), debt-to-

assets ratio (Debt/Assets), Tobin’s Q, cash-to-assets ratio (Cash/Assets), and firm age (Age). Once

we generate the residuals from the above regression, we label them as orthogonalized carbon emission

intensity (CEI⊥). We then repeat the Fama-MacBeth regressions of Table 3 using CEI⊥ as the main

independent variable.

Table A.5 replicates Panel B of Table 5 by including additional lagged controls of the changes in bonds’

institutional ownership (∆INST Bond), including the 1-year lagged change of ∆INST Bond from July

of year t − 1 to June of year t, as well as the 2-year lagged change of ∆INST Bond from July of year

t− 2 to June of year t− 1.

Table A.6 replicates Panel B of Table 5 by including dummy variables of the change in bonds’

institutional ownership (∆INST Bond), including the 1-year lagged change of ∆INST Bond from July

of year t−1 to June of year t, to address potential non-linearity between ∆INST Bond and future bond

returns.

Table A.7 reports the monthly return difference (Low − High) between the low-CEI portfolio (Quintile

1) and the high-CEI portfolio (Quintile 5), conditioning on measures of investor attention to climate

change.

Table A.8 investigates the relation between CEI and subsequent changes in bond yield-to-maturity

(YTM) and shows that firms with low (high) carbon emissions intensity experience a reduction (increase)

in yield-to-maturity in the future.

Table A.9 replicates Table 2 for firms with high and low leverage, respectively, based on the the median

value of firms’ leverage in the sample.

Table A.10 reports the univariate portfolio results of individual stocks sorted by the carbon emissions

intensity (CEI).
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Table A.1 Persistence and Transition Matrix of Carbon Emissions Intensity

This table reports the year-to-year transition matrix for portfolios of firms sorted on the carbon emissions
intensity from one- to five-year-ahead. Each year from 2005 to 2017, we form decile portfolios of firms
based on their scope 1 carbon emissions intensity (CEI), defined as the firm-level greenhouse gas emission
in CO2 equivalents divided by the total revenue of the firm in millions of dollars. The table presents the
average probability that a firm in decile i (defined by the rows) in one year will be in decile j (defined
by the columns) in the subsequent year. If carbon emissions intensity were completely random, then all
the probabilities should be approximately 10%, since a high or low CEI in one year should say nothing
about the carbon emissions intensity in the following year. Instead, all the diagonal elements of the
transition matrix exceed 10%, illustrating that CEI is highly persistent.

Panel A: One-year-ahead

Decile Low CEI 2 3 4 5 6 7 8 9 High CEI

Low CEI 94.13% 3.47% 0.68% 0.85% 0.21% 0.38% 0.08% 0.17% 0.00% 0.04%
2 9.43% 58.03% 3.21% 1.44% 0.46% 0.38% 0.17% 0.13% 0.04% 0.00%
3 0.38% 6.68% 73.42% 3.30% 1.10% 0.46% 0.25% 0.34% 0.00% 0.04%
4 0.30% 0.51% 6.93% 72.61% 4.31% 2.07% 0.51% 0.42% 0.08% 0.00%
5 0.08% 0.21% 0.51% 8.79% 74.26% 4.31% 0.59% 0.21% 0.04% 0.00%
6 0.04% 0.04% 0.38% 0.80% 7.48% 68.09% 5.92% 0.97% 0.17% 0.00%
7 0.00% 0.04% 0.21% 0.34% 1.06% 7.44% 68.98% 6.47% 0.30% 0.17%
8 0.00% 0.13% 0.17% 0.21% 0.93% 0.97% 7.95% 69.86% 4.95% 0.34%
9 0.04% 0.00% 0.08% 0.00% 0.04% 0.13% 0.17% 5.62% 74.85% 5.16%

High CEI 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.04% 0.38% 5.28% 80.30%

Panel B: Two-year-ahead

Decile Low CEI 2 3 4 5 6 7 8 9 High CEI

Low CEI 89.47% 5.48% 1.04% 2.03% 0.44% 0.93% 0.16% 0.38% 0.00% 0.05%
2 12.34% 59.70% 4.99% 2.96% 1.04% 0.88% 0.38% 0.22% 0.11% 0.05%
3 1.15% 11.84% 68.20% 4.88% 2.36% 1.37% 0.55% 0.49% 0.00% 0.05%
4 0.55% 1.81% 13.27% 65.02% 6.25% 3.40% 1.15% 1.04% 0.11% 0.00%
5 0.22% 0.38% 1.15% 14.97% 67.43% 6.74% 1.37% 0.33% 0.22% 0.00%
6 0.05% 0.05% 0.88% 1.86% 11.84% 64.80% 7.89% 1.97% 0.27% 0.00%
7 0.05% 0.11% 0.22% 0.71% 2.19% 11.73% 66.23% 7.46% 0.38% 0.33%
8 0.00% 0.27% 0.44% 0.49% 1.04% 1.32% 9.92% 69.08% 7.51% 0.82%
9 0.05% 0.00% 0.22% 0.00% 0.05% 0.27% 0.49% 8.22% 73.68% 8.06%

High CEI 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.11% 0.66% 8.55% 81.41%

Panel C: Three-year-ahead

Decile Low CEI 2 3 4 5 6 7 8 9 High CEI

Low CEI 84.05% 7.83% 1.73% 3.16% 0.60% 1.43% 0.60% 0.60% 0.00% 0.00%
2 12.49% 70.13% 6.47% 4.89% 1.81% 1.66% 0.75% 0.15% 0.23% 0.08%
3 1.50% 18.13% 65.46% 6.02% 3.46% 2.41% 1.13% 0.68% 0.08% 0.08%
4 1.05% 2.78% 19.71% 60.12% 8.20% 4.89% 1.66% 1.73% 0.15% 0.00%
5 0.45% 0.68% 1.88% 23.02% 62.45% 9.48% 2.48% 0.60% 0.08% 0.00%
6 0.00% 0.23% 1.13% 3.01% 14.75% 66.29% 10.31% 2.71% 0.45% 0.00%
7 0.08% 0.15% 0.38% 1.05% 3.46% 16.10% 64.79% 9.26% 0.15% 0.53%
8 0.00% 0.38% 0.68% 0.83% 0.90% 1.81% 12.94% 69.22% 11.21% 1.35%
9 0.08% 0.00% 0.23% 0.00% 0.00% 0.45% 0.98% 11.51% 73.89% 11.66%

High CEI 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.15% 1.05% 12.42% 84.95%
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Table A.1: (Continued)

Panel D: Four-year-ahead

Decile Low CEI 2 3 4 5 6 7 8 9 High CEI

Low CEI 81.39% 8.31% 2.16% 3.90% 0.78% 1.65% 1.13% 0.69% 0.00% 0.00%
2 13.94% 67.53% 6.15% 5.89% 2.51% 1.73% 0.87% 0.17% 0.35% 0.00%
3 2.42% 19.65% 60.52% 7.53% 3.98% 3.38% 1.39% 0.87% 0.17% 0.09%
4 1.47% 3.98% 23.81% 49.70% 8.48% 6.75% 2.42% 2.42% 0.17% 0.00%
5 0.52% 0.69% 2.42% 29.18% 57.14% 11.43% 2.60% 0.87% 0.09% 0.00%
6 0.09% 0.26% 1.56% 3.72% 17.32% 57.14% 10.74% 3.72% 0.43% 0.00%
7 0.00% 0.17% 0.35% 1.39% 4.94% 18.53% 62.86% 9.18% 0.26% 0.61%
8 0.00% 0.35% 1.04% 1.04% 0.78% 2.16% 14.37% 66.15% 11.95% 1.90%
9 0.09% 0.00% 0.35% 0.00% 0.00% 0.69% 1.13% 12.64% 70.82% 13.33%

High CEI 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.17% 1.30% 14.37% 83.03%

Panel E: Five-year-ahead

Decile Low 2 3 4 5 6 7 8 9 High

Low CEI 79.52% 8.39% 3.00% 3.80% 0.80% 2.10% 1.30% 1.10% 0.00% 0.00%
2 14.49% 64.84% 6.09% 7.19% 2.70% 1.90% 1.10% 0.20% 0.20% 0.00%
3 3.10% 21.28% 55.84% 8.29% 4.70% 3.90% 1.90% 0.80% 0.30% 0.10%
4 1.80% 4.60% 26.37% 42.46% 8.09% 8.39% 3.20% 3.10% 0.20% 0.00%
5 0.60% 0.70% 2.50% 33.37% 50.65% 13.29% 2.30% 1.40% 0.10% 0.00%
6 0.20% 0.20% 2.00% 4.50% 22.48% 48.95% 11.09% 4.00% 0.50% 0.00%
7 0.00% 0.20% 0.70% 1.50% 4.90% 21.78% 59.54% 8.79% 0.60% 0.60%
8 0.00% 0.30% 1.30% 1.00% 1.00% 2.50% 15.68% 62.44% 12.59% 2.60%
9 0.10% 0.00% 0.50% 0.00% 0.00% 0.80% 1.10% 13.59% 68.63% 14.19%

High CEI 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.20% 1.50% 15.68% 81.32%
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Table A.2 Alternative Factor Models for the Univariate Portfolios of Corporate
Bonds Sorted by the Firm-Level Carbon Emissions Intensity (CEI)

This table replicates the results in Table 2 for quintile portfolios of corporate bonds based on the firm-level
carbon emissions intensity (CEI) based on alternative factor models including the profitability and investment
factors from Fama and French (2015) and Hou, Xue, and Zhang (2015). The table reports the average CEI, the
next-month average excess return, 5-factor alpha from Fama and French (2015), the Q4-factor alpha from Hou,
Xue, and Zhang (2015), the 9-factor and 8-factor alpha from combining these models with the bond market
factors from Bai, Bali, and Wen (2019) for each quintile. The bond market factors from Bai, Bali, and Wen
(2019) include the excess bond market return (MKTBond), the downside risk factor (DRF), the credit risk factor
(CRF), and the liquidity risk factor (LRF). Newey-West adjusted t-statistics are given in parentheses. ∗, ∗∗, and
∗∗∗ indicate the significance at the 10%, 5%, and 1% levels, respectively. The sample period is from July 2006 to
June 2019.

Quintiles Average Average FF 5-factor Q4-factor (FF5 + BBW) (Q4 + BBW)
CEI return alpha alpha 9-factor alpha 8-factor alpha

Low 36.75 0.37 0.24 0.34 0.08 0.11
(3.66) (2.16) (3.22) (2.28) (2.54)

2 153.18 0.35 0.22 0.33 0.03 0.08
(3.42) (2.03) (3.33) (0.59) (1.66)

3 333.77 0.33 0.22 0.31 0.06 0.10
(3.42) (2.21) (3.23) (1.53) (2.15)

4 518.59 0.31 0.19 0.28 0.03 0.04
(3.28) (1.88) (2.80) (0.99) (0.98)

High 1127.34 0.23 0.11 0.18 -0.06 -0.02
(2.51) (1.29) (2.26) (-0.61) (-0.41)

High − Low -0.14*** -0.13*** -0.16*** -0.14*** -0.13**
(-2.62) (-2.68) (-2.81) (-2.69) (-2.40)
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Table A.3 Univariate Portfolios of Corporate Bonds Sorted by the Industry-Level
Carbon Emissions Intensity (CEI)

This table replicates the results in Table 2 based on the industry-level carbon emissions intensity (CEI)
using the Fama-French 30 industry classifications. We form quintile portfolios of corporate bonds
based on the average carbon emissions intensity (CEI) at the industry level in June of each year t for
firms with fiscal year ending in year t − 1. The portfolio returns are calculated for July of year t to
June of year t + 1 and then rebalanced. CEI is defined as the firm-level greenhouse gas emission in
CO2 equivalents divided by the total revenue of the firm in millions of dollars. Newey-West adjusted
t-statistics are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%, and 1%
levels, respectively. The sample period is from July 2006 to June 2019.

Quintiles Average Average 5-factor stock 4-factor bond 9-factor
industry-level CEI return alpha alpha alpha

Low 6.38 0.41 0.27 0.03 0.02
(3.38) (2.29) (0.68) (0.35)

2 10.21 0.34 0.23 0.05 0.05
(2.63) (1.92) (0.88) (0.86)

3 11.21 0.32 0.22 0.12 0.07
(2.84) (1.71) (3.71) (2.47)

4 15.47 0.33 0.26 0.04 0.04
(3.43) (2.56) (1.38) (1.27)

High 948.16 0.25 0.11 -0.10 -0.10
(2.67) (1.66) (-2.08) (-1.75)

High − Low -0.15** -0.16** -0.13** -0.12**
(-2.62) (-2.45) (-2.14) (-2.38)
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Table A.4 Robustness Check (1): Orthogonalized Measure of Carbon Emissions
Intensity and Corporate Bond Returns

This table replicates Table 3 by including orthogonalized measure of carbon emission intensity (CEI⊥).
Specifically, we run contemporaneous cross-sectional regressions of carbon emission intensity (in logarithm) with
respect to firm-level characteristics to investigate the unique information in CEI, above and beyond these firm-level
characteristics, including return-on-assets (ROA), debt-to-assets ratio (Debt/Assets), Tobin’s Q, cash-to-assets
ratio (Cash/Assets), and firm age (Age):

ln(CEIi,t) = λ0,t+λ1,tROAi,t+λ2,t(Debt/Assets)i,t+λ3,t(Tobin
′s Q)i,t+λ4,t(Cash/Assets)i,t+λ5,tAgei,t+ε

CEI
i,t ,

Once we generate the residuals from the above regression, we label them as orthogonalized carbon emission
intensity (CEI⊥). We then repeat the Fama-MacBeth regressions of Table 3 using CEI⊥ as the main independent
variable. The dependent variable is the corporate bond excess return from July of year t to June of year t + 1.
Newey-West (1987) t-statistics are reported in parentheses to determine the statistical significance of the average
intercept and slope coefficients. The last row reports the average adjusted R2 values and we control for the
Fama-French 12 industry fixed effects in all specifications. Numbers in bold denote statistical significance at the
5% level or below.

(1) (2) (3) (4)
Dep.var = Returnt+1:t+12 Univariate Controlling for Controlling for systematic Controlling for

bond characteristics and eclimate risk beta all variables

CEI⊥ -0.128 -0.116 -0.120 -0.136
(-2.85) (-2.46) (-2.69) (-2.50)

βBond 0.135 0.134
(2.86) (2.06)

Downside risk (5% VaR) 0.086 0.062
(3.04) (2.84)

ILLIQ 0.001 0.003
(0.18) (0.14)

Rating 0.012 0.024
(0.35) (0.50)

Maturity 0.103 0.106
(1.03) (1.08)

Size 0.004 0.005
(0.12) (0.17)

Lag Return -0.034 -0.046
(-4.28) (-4.73)

βDEF -0.136 -0.106
(-1.04) (-0.64)

βTERM 0.301 0.602
(1.06) (1.04)

βUNC -0.124 -0.321
(-2.18) (-1.63)

βClimate -0.650 0.064
(-0.49) (0.03)

Intercept 0.302 0.164 0.160 0.107
(1.04) (1.28) (1.06) (2.12)

Industry Fixed Effects YES YES YES YES
Adj. R2 0.040 0.251 0.162 0.290
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Table A.5 Robustness Check (2): Carbon Emissions Intensity, Institutional
Ownership, and Corporate Bond Returns

This table replicates Panel B of Table 5 by including additional lagged controls of the changes in bonds’
institutional ownership (∆INST Bond), including the 1-year lagged change of ∆INST Bond from July of year
t − 1 to June of year t, as well as the 2-year lagged change of ∆INST Bond from July of year t − 2 to June
of year t − 1. The dependent variable is the corporate bond excess return from July of year t to June of year
t + 1. Newey-West (1987) t-statistics are reported in parentheses to determine the statistical significance of the
average intercept and slope coefficients. The last row reports the average adjusted R2 values and we control for
the Fama-French 12 industry fixed effects in all specifications. Numbers in bold denote statistical significance at
the 5% level or below.

(1) (2) (3) (4)
Dep.var = Returnt+1:t+12 Univariate Controlling for Controlling for systematic Controlling for

bond characteristics and eclimate risk beta all variables

ln(CEI) -0.037 -0.029 -0.021 -0.022
(-2.48) (-2.25) (-2.08) (-2.06)

∆INST Bond 1.163 0.518 0.659 0.414
(1.69) (1.04) (1.37) (0.80)

1-year lagged ∆INST Bond -0.513 -0.451 -0.399 -0.393
(-1.45) (-1.11) (-1.22) (-1.00)

2-year lagged ∆INST Bond 0.313 0.336 0.332 0.349
(1.26) (1.44) (1.53) (1.48)

βBond 0.050 0.164
(0.46) (1.46)

Downside risk (5% VaR) 0.026 0.027
(0.98) (1.03)

Illiq 0.022 0.020
(2.35) (2.28)

Rating 0.013 0.008
(0.24) (0.16)

Maturity 0.005 0.003
(0.74) (0.37)

Size 0.081 0.063
(1.21) (1.12)

Lag return -0.272 -0.282
(-5.27) (-6.09)

βDEF 0.023 -0.029
(0.13) (-0.38)

βTERM -0.110 -0.027
(-0.49) (-0.16)

βUNC -0.295 0.159
(-1.78) (0.92)

βClimate 1.447 1.198
(0.68) (0.60)

Intercept 0.624 0.128 0.327 0.176
(1.67) (0.33) (1.19) (0.49)

Industry Fixed Effects YES YES YES YES
Adj. R2 0.074 0.287 0.140 0.304
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Table A.6 Robustness Check (3): Carbon Emissions Intensity, Institutional
Ownership, and Corporate Bond Returns

This table replicates Panel B of Table 5 by including dummy variables of the change in bonds’ institutional
ownership (∆INST Bond), based on the 1-year lagged change of ∆INST Bond from July of year t − 1 to June
of year t. ∆INST Quintile 5 is a dummy variable that equals to 1 if ∆INST belongs to the highest quintile
of decreases in institutional ownership. Similarly, ∆INST Quintile 4, ∆INST Quintile 3, and ∆INST Quintile 2
are dummy variables that equal to 1 if the value falls belong to the 4th, 3rd, and 2rd quintile of decreases in
institutional ownership. The dependent variable is the corporate bond excess return from July of year t to June
of year t+ 1. Newey-West (1987) t-statistics are reported in parentheses to determine the statistical significance
of the average intercept and slope coefficients. The last row reports the average adjusted R2 values and we control
for the Fama-French 12 industry fixed effects in all specifications. Numbers in bold denote statistical significance
at the 5% level or below.

(1) (2) (3) (4)
Dep.var = Returnt+1:t+12 Univariate Controlling for Controlling for systematic Controlling for

bond characteristics and eclimate risk beta all variables

ln(CEI) -0.025 -0.022 -0.028 -0.019
(-2.51) (-2.11) (-2.74) (-2.02)

∆INST Quintile 5 -0.127 -0.078 -0.177 -0.060
(-2.49) (-1.11) (-2.73) (-0.80)

∆INST Quintile 4 -0.110 -0.024 -0.129 -0.013
(-1.54) (-0.50) (-1.53) (-0.26)

∆INST Quintile 3 -0.073 -0.055 -0.079 -0.034
(-1.96) (-1.43) (-1.66) (-0.84)

∆INST Quintile 2 -0.048 -0.027 -0.053 -0.021
(-1.22) (-0.72) (-1.13) (-0.55)

βBond 0.120 0.159
(1.63) (1.79)

Downside risk (5% VaR) -0.023 -0.027
(-0.73) (-1.03)

ILLIQ 0.018 0.018
(1.38) (1.46)

Rating 0.020 0.022
(0.75) (0.97)

Maturity 0.007 0.005
(1.26) (0.79)

Size 0.022 0.023
(1.31) (1.35)

Lag return -0.149 -0.157
(-6.28) (-6.75)

βDEF 0.103 -0.055
(0.80) (-0.67)

βTERM -0.220 0.081
(-1.23) (0.72)

βUNC -0.105 -0.131
(-1.06) (-1.09)

βClimate -0.023 0.210
(-0.10) (0.23)

Intercept 0.486 -0.011 0.489 -0.055
(2.37) (-0.07) (2.47) (-0.39)

Industry Fixed Effects YES YES YES YES
Adj. R2 0.056 0.271 0.113 0.287
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Table A.7 Investor Attention and Returns of the Carbon Emissions Intensity
Sorted Portfolios of Corporate Bonds

This table reports the monthly return difference (Low − High) between the low-CEI portfolio (Quintile
1) and the high-CEI portfolio (Quintile 5), conditioning on measures of investor attention to climate
change. In Panel A, we follow Choi et al. (2020) and measure investor attention to climate change
using the Abnormal Google Search Volume Index (ASVI), calculated as the natural log of the ratio
of SVI to the average SVI over the previous three month. ASVI Climate Change is the ASVI
corresponding to searches related to the topic “Climate Change”, whereas ASVI Global Warming is
the ASVI corresponding to searches related to the topic “Global Warming”. Positive (negative) ASVI
is associated with an increase (decrease) in investor attention. In Panel B, we conduct subperiod analysis
for the pre- and post-Paris agreement period. In Panel C, we conduct structural break test on the low-
minus-high return with unknown break date. ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%,
and 1% levels, respectively. The sample period is from July 2006 to June 2019.

Panel A: Investor attention and the low carbon alpha

Variables Low − High t-stat Variables Low − High t-stat

ASVI increases ASVI decreases

ASVI Climate Change ≥ 0 0.05 0.84 ASVI Climate Change < 0 0.26∗∗∗ 4.30

ASVI Global Warming ≥ 0 0.07 1.25 ASVI Global Warming < 0 0.23∗∗∗ 3.81

Panel B: Pre- and Post-Paris agreement and the low carbon alpha

Pre-Paris Agreement 0.19∗∗∗ 3.65 Post-Paris Agreement 0.02 0.45

Difference in Mean (Post − Pre) -0.16∗∗ -2.38

Panel C: Tests for structural break for the low carbon alpha

Test for Unknown Structural Break Date 2016m3

p-value 0.022

9



Table A.8 Carbon Emissions Intensity (CEI) and Yield-to-Maturity (YTM):
Fama-MacBeth Cross-Sectional Regressions

This table reports the average intercept and slope coefficients from the Fama and MacBeth (1973) cross-sectional
regressions of future changes in yield-to-maturity (YTM) on the logarithm of carbon emissions intensity (CEI),
with and without controls. The dependent variable is the change in YTM from July of year t to June of year t+1,
relative to the YTM in June of year t, and key independent variable ln(CEI) is based on the firm-level carbon
emissions intensity in June of each year t for firms with fiscal year ending in year t− 1. Control variables include
bond market beta (βBond), bond characteristics (maturity, size), downside risk, and bond-level illiquidity. Time-
to-maturity is defined in terms of years and Size is defined in terms of $billion. Illiq is the bond-level illiquidity
computed as the autocovariance of the daily price changes within each month. We also control for systematic
risk betas such as the default beta (βDEF ), term beta (βTERM ), macroeconomic uncertainty beta (βUNC), and
climate change news beta (βClimate). Newey-West (1987) t-statistics are reported in parentheses to determine the
statistical significance of the average intercept and slope coefficients. The last row reports the average adjusted
R2 values and we control for the Fama-French 12 industry fixed effects in all specifications. Numbers in bold
denote statistical significance at the 5% level or below.

(1) (2) (3) (4)
Univariate Controlling for Controlling for systematic Controlling for

bond characteristics and climate change news betas all variables

ln(CEI) 0.051 0.056 0.048 0.050
(6.18) (4.17) (3.84) (4.03)

βBond -0.499 -0.703
(-2.70) (-6.04)

Downside risk (5% VaR) 0.669 0.505
(8.08) (7.72)

Illiq 0.091 0.086
(4.05) (4.39)

Maturity 0.030 0.054
(2.53) (4.91)

Size -0.143 -0.176
(-4.58) (-5.02)

βDEF 1.734 0.854
(6.65) (4.30)

βTERM -2.369 -1.584
(-6.07) (-5.88)

βUNC -1.469 -0.652
(-4.23) (-2.52)

βClimate -6.625 2.216
(-1.87) (0.91)

Industry Fixed Effects YES YES YES YES

Adj. R2 0.064 0.468 0.279 0.514
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Table A.9 Univariate Portfolios of Corporate Bonds Sorted by the Firm-Level Carbon Emissions Intensity
(CEI) Conditioning on Firm Leverage

This table replicates Table 2 for firms with high and low leverage, respectively, based on the the median value of firms’ leverage in the sample.
Leverage is defined as total debt (i.e., the sum of long term debt (DLTT) and debt in current liabilities (DLC)) as percentage of total assets.
We form quintile portfolios of corporate bonds based on the firm-level carbon emissions intensity (CEI) in June of each year t for firms with
fiscal year ending in year t−1. The portfolio returns are calculated for July of year t to June of year t+1 and then rebalanced. CEI is defined
as the firm-level greenhouse gas emission in CO2 equivalents divided by the total revenue of the firm in millions of dollars. Newey-West
adjusted t-statistics are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate the significance at the 10%, 5%, and 1% levels, respectively. The sample
period is from July 2006 to June 2019.

Leverage ≤ Median Leverage > Median

Average 5-factor Stock 4-factor 9-factor Average 5-factor Stock 4-factor 9-factor
return alpha bond alpha alpha return alpha bond alpha alpha

Low 0.37 0.26 0.07 0.06 0.33 0.11 0.04 0.02
(3.55) (2.31) (2.02) (1.78) (2.05) (0.81) (0.42) (0.20)

2 0.35 0.24 0.04 0.05 0.12 -0.02 -0.20 -0.14
(3.31) (2.15) (0.72) (1.11) (0.70) (-0.15) (-1.58) (-1.21)

3 0.32 0.22 0.07 0.07 0.25 0.08 -0.01 0.03
(3.43) (2.18) (1.45) (1.70) (1.78) (0.56) (-0.13) (0.32)

4 0.33 0.24 0.05 0.04 0.45 0.29 0.11 0.10
(3.67) (2.60) (1.41) (1.14) (3.02) (1.98) (0.82) (0.68)

High 0.33 0.22 0.03 0.04 -0.25 -0.50 -0.34 -0.41
(3.41) (2.31) (0.58) (1.01) (-1.12) (-2.28) (-2.29) (-2.66)

High − Low -0.03 -0.04 -0.04 -0.02 -0.58*** -0.60*** -0.38** -0.43***
(-0.95) (-0.98) (-1.11) (-0.59) (-3.15) (-3.24) (-2.16) (-2.66)
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Table A.10 Univariate Portfolios of Individual Stocks Sorted by the Firm-Level Carbon Emission Intensity (CEI)

Quintile portfolios of individual stocks are formed based on the firm-level carbon emission intensity (CEI) in June of each year t for firms with fiscal year
ending in year t− 1. The portfolio returns are calculated for July of year t to June of year t+ 1 and then rebalanced. Carbon emission intensity is defined
as the firm-level greenhouse gas emission in CO2 equivalents, a standard unit for measuring a firm’s carbon footprint, divided by the total revenue of the
firm in millions of dollars. Panel A reports results for the Scope 1 carbon emission, defined as greenhouse gas emissions generated from burning fossil
fuels and production processes which are owned or controlled by the company. The portfolios are value-weighted using market capitalization as weights.
Since carbon emission levels intrinsically vary across industries, we form portfolios within each of the 12 Fama-French industries to control for the industry
effect and the calculate the average portfolio returns across industries. Quintile 1 is the portfolio with the lowest CEI and Quintile 5 is the portfolio
with the highest CEI. The table reports the average CEI, the next-month average excess return, the 5-factor FFCPS alpha from stock market factors,
the Fama-French (2015) 5-factor alpha, and the Q-factor alpha for each quintile. The last row shows the differences monthly average returns and the
differences in alphas with respect to the factor models. Newey-West adjusted t-statistics are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate the significance
at the 10%, 5%, and 1% levels, respectively. The sample period is from July 2006 to June 2019.

Panel A: Full sample: July 2006 – June 2019

Average Average FFCPS FF 5-factor Q-factor Average Average FFCPS FF 5-factor Q-factor
CEI return alpha alpha alpha CEI return alpha alpha alpha

All stocks Stocks with bonds

Low 20.69 0.93 0.11 0.05 0.17 Low 17.44 1.03 0.27 0.24 0.30
(2.22) (1.46) (0.49) (1.34) (2.77) (3.00) (2.20) (2.81)

2 57.52 0.83 0.08 0.03 0.11 2 64.27 0.96 0.22 0.16 0.30
(2.11) (1.13) (0.35) (1.35) (2.06) (1.44) (0.87) (1.70)

3 186.24 0.79 0.00 -0.03 0.03 3 168.94 0.95 0.26 0.25 0.28
(1.92) (0.02) (-0.31) (0.36) (2.49) (2.08) (1.85) (2.08)

4 417.12 0.84 0.07 0.02 0.12 4 453.75 0.90 0.13 0.10 0.25
(2.05) (0.95) (0.26) (1.18) (1.93) (0.81) (0.59) (1.27)

High 1149.57 0.71 -0.14 -0.16 -0.07 High 1218.84 0.69 -0.14 -0.28 -0.15
(1.56) (-0.85) (-0.88) (-0.41) (1.67) (-0.90) (-1.69) (-0.84)

High − Low -0.22* -0.25* -0.20 -0.24* High − Low -0.33** -0.41*** -0.53*** -0.46***
(-1.74) (-1.83) (-1.39) (-1.72) (-2.38) (-2.79) (-3.20) (-2.81)

Panel B: Subsample: Jan 2010 – June 2019

Average Average FFCPS FF 5-factor Q-factor Average Average FFCPS FF 5-factor Q-factor
CEI return alpha alpha alpha CEI return alpha alpha alpha

All stocks Stocks with bonds

Low 17.99 1.13 0.02 -0.03 -0.02 Low 14.89 1.21 0.16 0.10 0.13
(4.31) (0.33) (-0.38) (-0.23) (4.14) (1.57) (1.04) (1.46)

2 50.91 1.05 0.02 -0.03 -0.00 2 51.77 1.10 0.21 0.06 0.12
(3.82) (0.27) (-0.46) (-0.06) (3.97) (1.33) (0.44) (0.79)

3 166.20 1.04 -0.01 -0.08 -0.06 3 149.26 1.19 0.23 0.21 0.22
(3.28) (-0.07) (-0.76) (-0.55) (3.81) (1.41) (1.28) (1.41)

4 397.91 1.06 0.06 -0.04 -0.01 4 418.06 1.14 0.18 0.08 0.07
(4.28) (0.91) (-0.58) (-0.09) (4.17) (1.45) (0.73) (0.64)

High 1088.19 0.80 -0.27 -0.38 -0.33 High 1146.58 0.80 -0.27 -0.52 -0.48
(2.46) (-2.25) (-2.70) (-2.34) (2.39) (-1.66) (-2.93) (-2.35)

High − Low -0.34** -0.29** -0.35** -0.31** High − Low -0.41*** -0.43*** -0.63*** -0.62***
(-2.53) (-2.61) (-2.31) (-2.21) (-2.74) (-2.86) (-3.58) (-3.11)
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