


Applications of vector autoregressions in their scalar
autoregressive component form

Leo Krippner∗

4 November 2024

Abstract

The eigenvalue/eigenvector structure underlying a standard N -variable P -lag vector au-
toregression (VAR) may be transformed into a system of NP scalar AR1 processes, each
with an eigenvalue as its coeffi cient. This perspective allows a VAR to be assessed, ana-
lyzed, and manipulated using the mathematical convenience of elementary AR1 processes.
Illustrative empirical applications demonstrate the inherent benefits: (1) the persistence of
a VAR’s dynamics is interpreted from its AR1 processes; (2) closed-form VAR forecasts are
obtained from AR1 forecasts; (3) equality or zero constraints on selected AR1 coeffi cients
are tested and imposed for VAR parsimony; (4) a median-unbiased estimate of the largest
AR1 coeffi cient is generated and imposed to produce a more persistent VAR; (5) a unit root
for the largest AR1 coeffi cient is tested and imposed to produce a cointegrated VAR, which
also produces an estimate of the associated cointegrating vector.
JEL classification: C13, C32, C53
MOS classification: 62H12; 62H15; 62M10
Keywords: vector autoregression; VAR; companion matrix; eigenvalues; eigenvectors

1 Introduction

In this note, I show that a standard vector autoregression (VAR) may be transformed into a
system of scalar first-order autoregression (AR1) processes that provides a beneficial perspective
for assessing, analyzing, and manipulating VARs in empirical applications. In particular, as I
highlight in the examples outlined further below, AR1 processes are more transparent and
mathematically straightforward to work with than a VAR in its coeffi cient matrix form.

The basis for the transformation is decomposing the companion matrix for a VAR into its
eigenvalue and eigenvector matrices where, as detailed in section 2, the latter has a form that is
well-known in applied mathematics; e.g. see Wilkinson (1965). Section 3 then establishes that
the eigensystem decomposition for an N -variable P -lag VAR creates a system of NP scalar AR1
processes, each with an eigenvalue as its coeffi cient. Additionally, I show that the data used to
estimate a VAR may be transformed into the sum of NP components, where each component is
a constant N × 1 vector containing the unique parameters of the eigenvector multiplied by its
associated AR1 process. An immediate consequence is that point forecasts from the VAR for
any chosen horizon may be obtained in closed-form, simply as elementary AR1 forecasts applied
to the N -vectors. Forecast Error Variances may also be obtained in closed form, i.e. without
recursive calculations through intervening horizons, which extends to ergodic variances as the
infinite limit.
∗Email: leokrippner@smu.edu.sg. Singapore Management University (Sim Kee Boon Institute of Financial

Economics), email: leokrippner@smu.edu.sg, University of Waikato, and CAMA at the Australian National Uni-
versity. I thank Xavi Bautista, Edda Claus, Iris Claus, Peter Phillips, and Benjamin Wong for helpful comments
on earlier related drafts.
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In section 4, I present five empirical applications, all based on an initial three-variable VAR
estimated with US macroeconomic data, to demonstrate inherent benefits of what I will refer to
as the eigensystem VAR (EVAR) component framework. To be clear, my aim is to illustrate the
nature of benefits over a range of VAR topics rather than fully developing any one application;
each would clearly require more comprehensive treatment than possible in a note.

The first application is decomposing the initial VAR and its data into its EVAR components
to assess its underlying dynamics. The second application is constructing closed-form forecasts
of the VAR variables based on its EVAR components.

The remaining applications demonstrate adjustments to the initial VAR suggested by the
assessment of its EVAR components. Hence, the third application produces more parsimonious
VARs by testing and imposing a zero constraint on the least persistent AR1 coeffi cient, and an
equality constraint on near-equal coeffi cients. The fourth application generates and constrains
the coeffi cient of the most persistent AR1 process to its median-unbiased value, akin to Andrews
(1993), thereby producing a more persistent bias-corrected VAR. A constraint of 1 is tested
and imposed in the fifth application, thereby producing a cointegrated VAR. The estimated
cointegrating vector is the N -vector of unique eigenvector parameters associated with the unit
eigenvalue imposed on the associated AR1 process.

Within the literature, I am only aware of two examples explicitly related to the EVAR com-
ponent framework.1 That is, Neumaier and Schneider (2001) presents an analogous eigensystem
decomposition for assessing the dynamics of a VAR, like my first application, and Krippner
(2024) develops a framework for specifying and estimating a VAR directly via its eigensystem
parameters, which I employ in my last three applications. More generally, there is a well-
established literature on forecasting with VARs, estimating VARs with coeffi cient constraints,
VAR unit root testing, and estimating cointegrating vectors/VARs; e.g. see Hamilton (1994),
Lütkepohl (2006), and Juselius (2018) for extensive references. Abadir, Hadri, and Tzavalis
(1999), Lawford and Stamatogiannis (2009), and Engsted and Pederson (2014) are examples
that investigate estimation biases in VARs. The related applications in this note offer new and
appealing approaches to each of the preceding topics. Specifically, to the best of my knowledge,
the existing literature contains no examples of closed-form Forecast Error Variance expressions
for VARs, using direct eigenvalue constraints for VAR parsimony or to impose unit roots in a
VAR, or making median-unbiased corrections to a VAR via its eigenvalues.

The remainder of this note follows the outline given above. Section 5 concludes and briefly
discusses potential extensions of the illustrative applications and other aspects that the EVAR
component framework could beneficially be applied to. Only essential proofs are contained within
the main text; supporting and supplementary material is relegated to an online appendix.

2 VARs and their eigensystem

A mean-adjusted VAR, which is most convenient for the exposition in this note, conditional on
the initial P observations of a given N × (P + T ) dataset {ȳt}T1−P , may be expressed as:

ȳt = β1ȳt−1 + . . .+ βP ȳt−P + εt (1)

where µ is the full-sample mean µ = 1
T+P

∑T
t=1−P yt, ȳt = yt − µ is an N × 1 vector of mean-

adjusted data at time t, ȳt−p is mean-adjusted data at time t − p with p ranging from 1 to
P , βp are N × N matrices of coeffi cients associated with yt−p, and εt is a vector of residuals
with an assumed multivariate normal distribution εt ∼ N (0N×1,Ωε), with 0N×1 the N × 1
vector of zeros and Ωε the N ×N covariance matrix. For a VAR estimated with a constant, i.e.

1Calculating companion matrix eigenvalues is routine to assess the stability of an estimated VAR, but such
checks are not intended to be part of a component framework.
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yt = α+ β̃1yt−1 + . . .+ β̃P yt−P + ε̃t, the mean µ̃ =
(
IN − β̃1 − . . .− β̃P

)−1
α would be used to

obtain ȳt, but otherwise the exposition remains the same.
The companion form of the mean-adjusted VAR is its equivalent re-expression as an NP -

variable first-order VAR, i.e.:
Ȳt = BȲt−1 + EY,t (2)

where Ȳt =
[
ȳ′t, . . . , ȳ

′
t−P+1

]′, Ȳt−1 =
[
ȳ′t−1, . . . , ȳ

′
t−P
]′, EY,t = [ε′t, 0, . . . , 0]′ (all NP × 1 vectors),

and EY,t ∼ N (0NP×1,ΩEY ) with Ωε in the upper-left corner being the only non-zero part of the
NP ×NP covariance matrix ΩEY . B is the NP ×NP companion matrix:

B =

[
βN×NP

INP−N 0[NP−N ]×N

]
(3)

where β = [β1, . . . , βP ], the N ×NP matrix of VAR coeffi cients, and INP−N and 0NP×N are the
identity matrix and a zero matrix, respectively, with dimensions given in their subscripts.

The N ×NP matrix J = [IN , 0N , . . . , 0N ] links the VAR and its companion form, i.e. JȲt =
J
(
BȲt−1 + Et

)
gives ȳt = βȲt−1 + εt, where βȲt−1 = β1ȳt−1 + . . . + βP ȳt−P , JΩEY J

′ = Ωε,
and J ′ΩεJ = ΩEY . Lütkepohl (2006) chapter 2 and Hamilton (1994) chapter 11 are standard
references for the aspects outlined in this section so far.

The companion matrix B may be decomposed into its eigenvector matrix D and eigenvector
matrix V (both NP × NP ), hence B = V DV −1. The eigenvector matrix is V = [V1, . . . , VNP ]
where each Vk has the form given below:

Vk =


SkD

P−1
k
...

SkDk

Sk

 with Sk =


S1,k
...

SN−1,k
1

 or V =


SDP−1

...
SD
S

 and VX =


S

SD−1

...
SDP−1

 (4)

with each Sk an N × 1 vector, and I have set the last element to 1 for this note as the
most convenient arbitrary eigenvector normalization. The first expression in equation 4 is
from Wilkinson (1965) pp. 33-34, as also referenced in Neumaier and Schneider (2001), and
applies in the case that all eigenvalues are distinct, hence D = diag([D1, . . . , DNP ]). The
third expression is my generalized notation where S = [S1, . . . , SNP ] and each block SDp−1

is an N × NP matrix. This form accommodates the distinct eigenvalue case, allows D to in-
clude Jordan blocks in the case of repeated eigenvalues, and also underlies the final expression
VX = V D1−P in equation 4 that is most convenient for the notation and derivations in this
note. That is, VX provides an equivalent companion matrix decomposition B = VXDV

−1
X (i.e.

B = V DV −1 = V D1−PDVDP−1V −1 = VXDV
−1
X ), and JVX = S. Section 2 in the online

appendix shows that V and VX must take the forms in equation 4.

3 VAR components and closed-form forecasts

This section first establishes the EVAR component structure in the case of distinct eigenvalues,
then section 3.2 uses that structure to obtain closed-form expressions for VAR forecasts.

Note that D may in general include real values and complex conjugate pairs (CCPs), i.e.
Dk+1 = Dk. Where required, I accommodate both cases by using the complex conjugate trans-
pose (Hermitian) operator “†”; i.e. for a generic vector or matrix C, C† = C

′
so Ci,j = Cj,i, and

C† = C ′, the standard transpose, when C is real. Section 3 of the online appendix shows that
CCP EVAR components result from CCP eigenvalues, and Sekita, Kurita, and Otsu (1992) and
Gu and Jiang (2005) are references for complex AR1 processes (which are AR1 processes with
a complex coeffi cient and complex-valued data). In section 3.3, I briefly discuss an alternative
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to using complex AR1 processes, and also the generalization required when a VAR contains
repeated eigenvalues.

3.1 VAR components

Proposition 1 (VAR transformation to AR1 processes) If all eigenvalues are distinct,
the companion form of an N -variable P -lag VAR may be expressed equivalently as a system
of NP scalar AR1 processes.

Proof.

Ȳt = BȲt−1 + EY,t

= VXDV
−1
X Ȳt−1 + EY,t

V −1X Ȳt = DV −1X Ȳt−1 + V −1X EY,t

Xt = DXt−1 + EX,t (5)

where Xt = V −1X Ȳt, Xt−1 = V −1X Ȳt−1, EX,t = V −1X EY,t (all NP × 1 vectors), and EX,t ∼
N (0NP×1,ΩEX ) with ΩEX = V −1X J ′ΩεJ

(
V −1X

)†
. Given that D is diagonal in the case of distinct

eigenvalues, each of the NP rows of equation 5 is:

Xk,t = DkXk,t−1 + EXk,t (6)

with EXk,t ∼ N (0,ΩEX ,k,k).

Proposition 2 (AR1 coeffi cient equivalence to VAR eigenvalues) If all eigenvalues are
distinct, each Dk is equivalent to an AR1 coeffi cient from the OLS regression of Xk,t on Xk,t−1.

Proof. A VAR conditional on the initial P observations of a given N×(P + T ) dataset {ȳt}T1−P
has maximum log-likelihood coeffi cient estimates β = ȳȲ ′L

(
ȲLȲ

′
L

)−1, where ȳ is the N×T matrix
of data yt for all periods, and ȲL is the NP × T matrix of data Ȳt−1 for all periods; e.g. see
Hamilton (1994) pp. 293-96 or my alterative proof in section 4 of the online appendix. Therefore,
from equation 3:

B =

[
ȳȲ ′L

(
ȲLȲ

′
L

)−1
INP−N 0[NP−N ]×N

]
= Ȳ Ȳ ′L

(
ȲLȲ

′
L

)−1 (7)

where the second line uses the identity
[
ȳ′−1, . . . , ȳ

′
−P+1

]′
Ȳ ′L
(
ȲLȲ

′
L

)−1
=
[
INP−N , 0[NP−N ]×N

]
,

and each ȳ−p is the N × T matrix of lagged data Ȳt−p. This identity is intuitive from the
line-by-line OLS regression perspective for Ȳt = BȲt−1 +EY,t, i.e. y1,t−1 = [1, 0, . . . , 0]Yt−1 + 0,
y2,t−1 = [0, 1, 0, . . . , 0]Yt−1 + 0, etc., but section 4 of the online appendix includes a proof.

The NP × T matrices of Xt and Xt−1 for all periods are respectively X = V −1X Ȳ and

XL = V −1X ȲL, and DXLX
†
L = XX†L is equivalent to B = Ȳ Ȳ ′L

(
ȲLȲ

′
L

)−1, i.e.:
DXLX

†
L = XX†L

DV −1X ȲLȲ
′
L

(
V −1X

)†
= V −1X Ȳ Ȳ ′L

(
V −1X

)†
DV −1X ȲLȲ

′
L = V −1X Ȳ Ȳ ′L

VXDV
−1
X = Ȳ Ȳ ′L

(
ȲLȲ

′
L

)−1 (8)
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where X†L =
(
V −1X ȲL

)†
= Ȳ †L

(
V −1X

)†
= Ȳ ′L

(
V −1X

)†
has been used in the second line. Equating

the diagonal matrix elements of DXLX
†
L and XX†L then gives the AR1 coeffi cients as OLS

regressions, i.e.:

DkXk,LX
†
k,L = XkX

†
k,L

Dk = XkX
†
k,L

(
Xk,LX

†
k,L

)−1
(9)

Proposition 3 (yt is the sum of components SkXk,t) If all eigenvalues are distinct, yt is
the sum of NP components, with each component being the vector Sk multiplied by the AR1
process for Xk,t.

Proof. ȳt = JȲt and Xt = V −1X Ȳt gives Ȳt = VXXt, so ȳt = JVXXt = SXt, which may be
expressed in summation form as:

ȳt =
NP∑
k=1

SkXk,t (10)

3.2 Closed-form VAR forecasts

Point forecasts from VARs are typically obtained recursively, i.e. Et [ȳt+1] = βȲt, Et [ȳt+2] =
βȲt+1, etc., or in closed-form but with matrix powers, i.e. Et [ȳt+h] = JBhȲt. Forecast Error
Variances (FEVs) Ωy (h) used to obtain confidence intervals around Et [ȳt+h] are obtained re-
cursively, i.e. Ωy (1) = Ωε, Ωy (2) = Ωy (1) + Φ1ΩεΦ

′
1, etc. with Φn = JBnJ ′, or equivalently

Ωy (h) =
∑h−1

n=0 ΦnΩεΦ
′
n. The ergodic variance is Ωy (∞) =

∑∞
n=0 ΦnΩεΦ

′
n. Lütkepohl (2006)

section 2.2.2 is a reference for all of the preceding aspects.
The first two propositions below respectively show that the EVAR components simplify VAR

point forecasts to a closed-form based on elementary AR1 forecasts, and also allows FEVs to
be obtained in closed-form based on scalar powers of the eigenvalues. The infinite limit of the
FEV is the closed-form the ergodic variance, and section 5 of the online appendix discusses this
ergodic variance result within the wider context of multivariate ergodic variances.

Proposition 4 (Closed-form point forecasts for a VAR) If all eigenvalues are distinct,
Et [yt+h] is the sum of the NP components, with each being the vector Sk multiplied by fore-
casts of the AR1 process for Xt.

Proof. Applying the expectations operator for horizon h to ȳt = SXt gives Et [ȳt+h] =
Et [SXt+h] = SEt [Xt+h], and Xt = DXt−1 + EX,t gives Et [Xt+h] = DhXt. Therefore:

Et [ȳt+h] = SDhXt (11)

D is diagonal in the case of distinct eigenvalues, so equation 11 may be expressed in sum-
mation form as:

Et [ȳt+h] =
NP∑
k=1

SkD
h
kXk,t (12)
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Proposition 5 (Closed-form FEVs for a VAR) If all eigenvalues are distinct, Ωy (h) may
be obtained by calculating each of the (i, j) elements of ΩX (h) as:

[ΩX (h)]ij = ΩEX ,ij
1−

(
DiDj

)h
1−DiDj

(13)

where ΩEX = V −1X J ′ΩεJ
(
V −1X

)†
, an NP ×NP Hermitian matrix, and then using the resulting

NP ×NP matrix ΩX (h) in the expression:

Ωy (h) = SΩX (h)S† (14)

Proof. The FEV summation expression Ωy (h) =
∑h−1

n=0 ΦnΩεΦ
′
n with Φn = JBnJ ′ is Ωy (h) =∑h−1

n=0 JB
nJ ′ΩεJ (Bn)′ J ′. Using the decomposition B = VXDV

−1
X :

Ωy (h) =

h−1∑
n=0

JVXD
nV −1X J ′ΩεJ

(
VXD

nV −1X

)†
J ′

= S

[
h−1∑
n=0

DnΩEX

(
D†
)n]

S† (15)

and below I use ΩX (h) =
∑h−1

n=0D
nΩEX

(
D†
)n
to denote the matrix defined by the summation

in the square brackets.
For clarity, I use ACA† as a generic expression for each matrix DnΩEX

(
D†
)n
, hence A =

Dn and C = ΩEX , and then evaluate the elements using index notation for matrix products,

i.e.
[
ACA†

]
ij

=
∑NP

k=1Aik

(∑NP
l=1CklA

†
lj

)
. First, given A†l 6=j = 0,

∑NP
l=1CklA

†
lj = CkjA

†
jj , so[

ACA†
]
ij

=
∑NP

k=1AikCkjA
†
jj . Then, given Ai6=k = 0,

[
ACA†

]
ij

= AiiCijA
†
jj = CijAiiAjj .

Therefore, each (i, j) element of DnΩEX

(
D†
)n
is ΩEX ,ijD

n
i D

n
j = ΩEX ,ij

(
DiDj

)n
, and each

element of [ΩX (h)]ij is then:

[ΩX (h)]ij = ΩEX ,ij

h−1∑
n=0

(
DiDj

)n
= ΩEX ,ij

1−
(
DiDj

)h
1−DiDj

(16)

where the sum of the geometric series
(
DiDj

)n
has been replaced by its closed-form solution.

Each (i, j) element of ΩX (h) may therefore be calculated using the closed-form solution
given in equation 16, with NP (NP + 1) /2 unique calculations required given the Hermitian
symmetry. The resulting ΩX (h) is used in equation 15 to obtain Ωy (h) = SΩX (h)S†.

Proposition 6 (Closed-form ergodic variance for a VAR) If all eigenvalues are distinct
and less than 1 in magnitude, the ergodic variance Ωy (∞) may be obtained by calculating each of
the (i, j) elements of ΩX (∞) as [ΩX (∞)]ij = ΩEX ,ij/

(
1−DiDj

)
, and then using the resulting

matrix ΩX (∞) in the expression Ωy (∞) = SΩX (∞)S†.

Proof. Ωy (∞) = S [limh→∞ΩX (h)]S† = SΩX (∞)S†, and each element of ΩX (∞) is obtained

as limh→∞ [ΩX (h)]ij = ΩEX ,ij

(
limh→∞

1−(DiDj)
h

1−DiDj

)
= ΩEX ,ij

1
1−DiDj

.
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3.3 CCP and repeated eigenvalues

An alternative to using CCP expressions in the case of CCP eigenvalues is to use real forms based
on the real 2 × 2 AR2 companion matrix. This is detailed in section 6 of the online appendix
but, as discussed further there, it is preferable to keep all AR1 processes separate for analysis
and applications to fully exploit the inherent scalar nature associated with distinct eigenvalues.
CCP results may then be combined into real forms as necessary, such as summing the CCP
components in figure 1, or real trigonometric forms could also be used; again see section 6 of
the online appendix.

Repeated eigenvalues will only occur in an estimated VAR if they are imposed, as in the
third application in section 4 with a pair of repeated eigenvalues. This case requires a 2 × 2
Jordan block within D but, as detailed in section 7 of the online appendix, still obtains scalar
closed-form solutions.

4 Empirical applications

This section contains five illustrative empirical applications to demonstrate the range of benefits
that the EVAR component framework offers. Underlying these applications is an initial OLS
VAR estimation on mean-adjusted end-quarter United States data for unemployment ut, annual
CPI inflation πt, and the 3-month Treasury bill rate rt (all from https://fred.stlouisfed.org). The
sample is from 1948Q1 (the first period with complete data) to 2007Q3 (immediately prior to the
onset of the Global Financial Crisis, simply to avoid the known change in the data-generating
process for rt due to subsequent periods with a lower bound constraint). The lag length is P = 2,
as suggested by the Schwarz criterion.

Table 1 contains the VAR coeffi cient and covariance matrix estimates. Standard errors are
omitted, here and elsewhere, to save space. The log-likelihood value for the initial VAR is
L0 = −668.18.

Table 1: VAR coeffi cient and covariance matrix estimates
coeffi cients covariances

β1 β2 Ωε

βu 1.37 —0.02 0.03 —0.46 0.04 —0.00 0.12 —0.02 —0.13
βπ —0.36 1.14 0.11 0.31 —0.25 —0.04 —0.02 0.69 0.21
βr —0.67 —0.07 0.73 0.67 0.15 0.17 —0.13 0.21 0.90

The first application decomposes the initial VAR into its EVAR components. Hence, table
2 contains the eigensystem parameters Dk and Sk that underlie the VAR in table 1. I obtain
these from the VAR companion matrix B with the MatLab function [V,D] = eig(B) and then
re-normalize each Vk so its last element is 1. Dk are the diagonal elements of D and the vectors
Sk are the last N rows of Vk. Below the eigensystem parameters are the diagonal elements of
ΩEX ,k,k, i.e. the variance of the AR1 process Xk,t = DkXk,t−1 + EXk,t for each component.

The first component is very persistent, with an AR1 coeffi cient of 0.97 and a half-life,
− log (2) / |Dk|, of 24.30 quarters. The next three components are moderately persistent and the
last two components are transitory. Components 3 and 4 are a CCP with an oscillation period of
2π/

[
cos−1 (Re [D3] / |D3|)

]
= 34.00 quarters and a half-life for the magnitude of 2.25 quarters.

Component 6 has a two-quarter oscillation period. The ergodic variances for each AR1 process,

ΩX,k,k (∞) = ΩEX ,k,k/
(

1− |Dk|2
)
, show that the components make contributions to the VAR’s

dynamics in the same order as their persistence, i.e. component 1 dominates, components 2 to
4 make moderate contributions, and the contributions of components 5 and 6 are minor.
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Table 2: VAR eigensystem parameters and EVAR component aspects

k 1 2 3 4 5 6
Dk 0.97 0.75 0.72+0.14i 0.72—0.14i 0.22 —0.15
Sk,u 0.52 —0.58 —1.76+0.28i —1.76—0.28i —0.21 —0.02
Sk,π 0.65 —0.53 1.18—0.98i 1.18+0.98i —1.22 —0.14
Sk,r 1 1 1 1 1 1

ΩEX ,k,k 0.40 1.30 0.37 0.37 0.06 0.02
Half-life of |Dk| 24.30 2.14 2.25 2.25 0.46 0.36

ΩX,k,k (∞) 7.19 2.97 0.80 0.80 0.06 0.02

The second application obtains closed-form forecasts for the VAR and its EVAR components.
Hence, figure 1 plots the mean-adjusted data yt and the point forecasts from the VAR out to
an arbitrary horizon of 40 quarters, where T is the last quarter of the sample, i.e. 2007Q3.
For just r̄t, to maintain clarity in the figure, I have also included the ±1 standard deviation
confidence interval and the ±1 ergodic standard deviation.2 These are respectively obtained
as ±1σFE(h) =

√
[Ωy (h)]3,3 and ±1σFE(∞) =

√
[Ωy (∞)]3,3, where Ωy (h) and Ωy (∞) are

calculated using the closed-form expressions from section 3. Ωy (∞) for the VAR is:

Ωy (∞) =

 2.18 1.19 1.60
1.19 7.55 5.81
1.60 5.81 8.42

 ; [Ωy (∞)]1 =

 1.92 2.40 3.72
2.40 3.01 4.65
3.72 4.65 7.19

 (17)

and [Ωy (∞)]1 is discussed shortly below.

Figure 1: Panel 1 contains the VAR data and forecasts and, for rt, the shaded ±1 standard deviation
confidence interval and the dashed ±1 ergodic standard deviation. The remaining panels contain the

same aspects for the EVAR components that underlie the VAR data and forecasts.

The remaining panels of figure 1 plot the components associated with each eigenvalue, us-
ing the same scale for comparability. For the real eigenvalues, each historical component is
SkXk,t, the point forecasts are SkDh

kXk,T . For rt, ±1σFE(h) =
√

[Ωy (h)]k,3,3 where [Ωy (h)]k =

ΩX,k,k (h)SkS
′
k, and ±1σFE(∞) =

√
[Ωy (∞)]k,3,3 where [Ωy (∞)]k = ΩX,k,k (∞)SkS

′
k. For

example, from [Ωy (∞)]1 provided above, [Ωy (∞)]1,3,3 = 7.19.

2The infinite limit of VAR point forecasts with all |Dk| < 1 is limh→∞ Et
[
yt+h

]
= S

[
limh→∞

(
Dh
)]
Xt =

S [0N×N ]Xt = 0N×1.
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The variances [Ωy (h)]k and [Ωy (∞)]k may also be viewed as contributions to Ωy (h) and
Ωy (∞) from the EVAR component k, and component 1 dominates in that regard. Section 8
of the online appendix contains the contributions of [Ωy (∞)]k to Ωy (∞) for all components,
including cumulative contributions that account for component covariances. Note that the scalar
series Xk,t (and X3,t + X4,t below), and their forecasts and variances will be identical to the
results for r̄t, due to my normalization of 1 for the last element of Sk.

The results for the CCP eigenvalues 3 and 4 are analogous to the real eigenvalue case,
except they are treated in pairs to create real results. I have summed the CCP components
and forecasts, i.e. S3X3,t + S4X4,t and S3Dh

3X3,T + S4D
h
4X4,T . The variances are [Ωy (h)]3&4 =

[S3, S4] ΩX,3:4 (h) [S3, S4]
† and [Ωy (∞)]3&4 = [S3, S4] ΩX,3:4 (∞) [S3, S4]

†, where 3:4 denotes the
2× 2 blocks from ΩX (h) and ΩX (∞) associated with the eigenvalues (D3, D4); see section 6 of
the online appendix for full details.

The third application is testing whether selected eigenvalues of the initial VAR may be
restricted to achieve parsimony, and I test two candidates based on the assessment discussed
earlier. First, given that D6 is the smallest eigenvalue associated with the least important EVAR
component, I test D6 = 0. Second, given that the imaginary components for the (D3, D4) CCP
are small then D3 ' D4, so I test D3 = D4 within a Jordan block. In both cases, I re-
estimate the VAR with the given constraints using the method provided in Krippner (2024),
which results in log-likelihood values of L1 = −668.82 and L1 = −668.50. The log-likelihood
ratios −2 (L1 − L0) are therefore 1.28 and 0.65 relative to the initial VAR, with probability
values χ2 (1.28, 1) = 0.742 and χ2 (0.65, 1) = 0.580. Hence, constraining the VAR with either
D6 = 0 or D3 = D4 is not rejected at any standard level of significance. The coeffi cients and
eigensystem for each of the constrained VAR estimations are contained respectively in sections
9 and 10 of the online appendix.

Figure 2: Simulation results used to obtain the median unbiased estimate of the largest eigenvalue of
the VAR, and to test whether a unit root may be imposed on the VAR.

The fourth application obtains a median-unbiased estimate of the largest eigenvalue from
the initial VAR, MU(D1). Analogous to Andrews (1993) for an AR1, the aim is to find MU(D1)
that gives a simulated median value equal to D1 from the initial VAR estimation. Hence, I
set a trial value of MU(D1), calculate the coeffi cients of the trial VAR using MU(D1) and the
remaining eigensystem parameters from the initial VAR estimation, and then simulate data
from the trial VAR 10,000 times. For each simulation n, I subtract the mean of the simulated
data, estimate the VAR on the mean-adjusted data, calculate its eigenvalues, and record D1,n.

Comparing the median for all simulations, i.e. Median
(
{D1,n}10,000n=1

)
, to D1 = 0.9719 from

the initial VAR estimation, I then iterate with new trial values of MU(D1) until the result is

Median
(
{D1,n}10,000n=1

)
= 0.9719. Panel 1 of figure 2 shows the results of the final trial that

obtains the estimate MU(D1) = 0.9920. Section 11 of the online appendix contains the VAR
estimation results with the imposed constraint D1 =MU(D1) = 0.9920 (which is not rejected
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statistically; L1 = −668.50, and −2 (L1 − L0) = 1.56 with probability value χ2 (1.56, 1) =
0.788). The half-life for D1 in that model is 86.30 quarters, which illustrates the much greater
persistence relative to the half-life of 24.30 quarters from the initial VAR.

The fifth application tests whether D1 may be set to a unit root in the VAR. From the
perspective of the AR1 processes for the EVAR components, the test is analogous to a Dickey-
Fuller test. I use a simulation process as for the median-unbiased application, except the largest
eigenvalue D1 is set to 1 and only a single process of 10,000 simulations is required. For each
simulation n, I obtain D1,n and its standard error SE(D1,n) with OLS estimation of X1,t on
X1,t−1, and record the t-statistic (D1,n − 1) /SE(D1,n). Panel 2 of figure 2 shows the results,
which has 10%, 5%, and 1% critical values of —2.80, —3.16, and —3.99 respectively. The t-statistic
from the initial VAR estimation is (D1 − 1) /SE(D1) = −1.83, and so the null hypothesis of
D1 = 1 is not rejected at any standard level of significance. Section 12 of the online appendix
contains the VAR estimation results with the constraint D1 = 1. The vector S1 = [0.40, 0.78, 1]
associated with the imposed eigenvalue D1 = 1 is the estimated cointegrating vector.

5 Conclusion

This note shows how a VAR in its eigensystem form may be transformed into a system of
AR1 processes, and the five illustrative applications demonstrate the inherent benefits of that
perspective for VAR applications. Specifically, working with scalar processes is mathematically
straightforward, and the statistical nature of an AR1 process is elementary and transparent.

Regarding extensions, the closed-form VAR forecast methods are readily applicable to im-
pulse responses, by forecasting from an impulse vector [ȳ0, 0, . . . , 0], and to closed-form FEV
decompositions. Additionally, just one or several persistent components may be used for par-
simonious long-horizon forecasts and FEVs, given that exponents of smaller eigenvalues within
the other components quickly converge to zero.

For VAR parsimony, the examples would be extended to systematic testing. For example,
information criteria could be used to test increasing sets of zero eigenvalue constraints from the
least to the most important EVAR components, e.g. D6 = 0, then D5 = D6 = 0, and so on.

The median-unbiased estimation and unit root testing methods can be extended to the second
(and subsequent) eigenvalues, e.g. calculating MU(D2) conditional on a VAR with MU(D1)
already imposed, or testing D2 = 1 conditional on D1 = 1 already imposed (or jointly testing
D1 = D2 = 1 with respect to the initial VAR). The estimation step in both could also be refined
by constraining the eigensystem parameter/s not being estimated/tested to their values from
the initial VAR estimation. The performance of median-unbiased VAR estimation remains to
be assessed relative to other methods of bias correction, e.g. see Engsted and Pederson (2014),
and VAR persistence imposition, e.g. Christiano (2012) summarizes Bayesian methods. The
performance of VAR unit root testing, and cointegrating vector/VAR estimation within the
EVAR component framework remains to be assessed relative to well-established approaches for
those aspects; e.g. see Lütkepohl (2006) chapters 6-9 and Juselius (2018).

Beyond the focus on eigenvalues in this note, the unique parameters of the eigenvectors Sk
associated with each AR1 process for Dk also offer a valuable perspective. A simple exam-
ple is seeking further VAR parsimony by testing zero restrictions on immaterial Sk elements.
More importantly, the inter-relationships among VAR variables from impulse responses may
be considered and controlled using constraints on both S and D. For example, a constraint
S1,π + c = S1,r in the cointegrating vector S1 associated with D1 = 1 would impose a long-run
real interest rate c, or setting Sk,u = 0 in the vector Sk would ensure that Et [ut+h] is unaffected
by the dynamics associated with the AR1 process for Dk (e.g. S1,u = 0 would be more consis-
tent with economic principles). Appropriate combinations of constraints within S and D would
therefore provide an avenue for identification within structural VARs. Repeated eigenvalue pair
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restrictions are particularly useful in this regard, because the exponential decay functions Dh
k

in the associated impulse response component SkDh
kXk,t + Sk+1D

h
kX2,t + SkhD

h−1
k Xk+1,t allow

an impulse to have instantaneous effects on selected variables, while the hump-shaped function
hDh−1

k allows selected variables to have only delayed responses.
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This online appendix contains supporting and supplementary material related to com-
ments and sections in the note “Applications of vector autoregressions in their scalar autore-
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1 Introduction

This appendix contains the following sections:
Section 2: Eigenvectors of a VAR companion matrix
Section 3: EVAR components for CCP eigenvalues
Section 4: VAR companion matrix in data form
Section 5: Wider context for the closed-form ergodic variance result
Section 6: Real AR2 forms for CCP eigenvalues
Section 7: EVAR components with repeated eigenvalues
Section 8: Complete set of ergodic variance results
Section 9: VAR estimates with a zero eigenvalue constraint
Section 10: VAR estimates with a repeated eigenvalue constraint
Section 11: VAR estimates with a median-unbiased eigenvalue constraint
Section 12: VAR estimates with a unit eigenvalue constraint

2 Eigenvectors of a VAR companion matrix

This section shows that the eigenvectors of a VAR companion matrix must take the forms given
in section 2 of the main text.

Proposition 1 Within the VAR companion matrix eigensystem decomposition, i.e. B = V DV −1,
V and equivalent expressions with an arbitrary normalization must take the following form:

Vk =


SkD

P−1
k
...

SkDk

Sk

 with Sk =


S1,k
...

SN−1,k

1

 or V =


SDP−1

...
SD
S

 and VX =


S

SD−1

...
SDP−1

 (1)

∗Email: leokrippner@smu.edu.sg. Singapore Management University (Sim Kee Boon Institute of Financial
Economics), University of Waikato, and the Centre for Applied Macroeconomic Analysis at the Australian National
University.
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where S = [S1, . . . , SNP ]. The block form for V in the third expression above is most general,
accommodating Jordan blocks for repeated eigenvalues, while Vk within V = [V1, . . . , VNP ] applies
when eigenvalues are distinct. VX = V D1−P is a convenient renormalization for the EVAR
component framework.

Proof. The eigensystem decomposition B = V DV −1 gives BV = V D. Writing the latter in
full using the expression for B from section 2 of the main text and the block form for V in the
third expression within equation 1 above gives:

[
βN×NP

INP−N 0[NP−N ]×N

]

SDP−1

SDP−2

...
SD
S

 =


SDP−1

SDP−2

...
SD
S

D


βV
SDP−1

...
SD
S

 =


SDP

SDP−1

...
SD
S

 (2)

All N×NP blocks are equalities apart from the first block βV = SDP that is an identity for the
VAR coeffi cients; i.e. β = SDPV −1 = SDP−1DV −1 = JV DV −1 = JB. Therefore, V within
B = V DV −1 must have the block form given for V in equation 1.

The form for Vk in the case of distinct eigenvalues follows from D = diag([D1, . . . , DNP ]).
Hence, each block of V will therefore be:

SDp = [S1, . . . , SNP ] diag ([D1, . . . , DNP ])p

= [S1, . . . , SNP ] diag
([
Dp

1, . . . , D
p
NP

])
=

[
S1D

p
1, . . . , SNPD

p
NP

]
(3)

and so:

V =


SDP−1

SDP−2

...
SD
S

 =


S1D

P−1
1 · · · SNPD

P−1
NP

S1D
P−2
1 · · · SNPD

P−2
NP

... · · ·
...

S1D1 · · · SNPDNP

S1 · · · SNP

 (4)

Each column of V in the preceding expression is an eigenvector Vk in the form of the first
expression within equation 1 above.

When D includes repeated eigenvalues, these are accommodated using Jordan blocks instead
of only diagonal elements in the eigenvalue matrix D. Denoting individual Jordan blocks (in-
cluding 1×1 blocks of distinct eigenvalues) with the subscript [k], so D = diag

([
D[1], . . . , D[K]

])
,

and partitioning S into a corresponding matrix S =
[
S[1], . . . , S[K]

]
, each N ×NP row of V will

be:
SDp =

[
S[1]D

p
[1], . . . , S[K]D

p
[K]

]
(5)

and so:

V =


SDP−1

SDP−2

...
SD
S

 =


S[1]D

P−1
[1] · · · S[K]D

P−1
[K]

S[1]D
P−2
[1] · · · S[K]D

P−2
[K]

... · · ·
...

S[1]D[1] · · · S[K]D[K]

S[1] · · · S[K]

 (6)
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Regarding the form of VX , this follows from each block SDp−1 of V being multiplied by
D1−P , i.e.:

VX =


SDP−1

SDP−2

...
SD
S

D1−P =


SDP−1D1−P

SDP−2D1−P

...
SDD1−P

SD1−P

 =


S

SD−1

...
SD2−P

SD1−P

 (7)

3 EVAR components for CCP eigenvalues

This section shows, as stated in the introduction for section 3 of the main text, that CCP
eigenvalues must be associated with CCP components. For completeness, I first establish the
initial results that CCP eigenvalues must be associated with CCP columns of V and S, and
CCP rows of V −1. Those results are then applied in the context of CCP EVAR components.

Proposition 2 CCP eigenvalues (Dk, Dk+1) =
(
Dk, Dk

)
are associated with CCP eigenvectors

(Vk, Vk+1) =
(
Vk, Vk

)
, CCP vectors (Sk, Sk+1) =

(
Sk, Sk

)
, and CCP rows k and k + 1 in the

inverse of the eigenvector matrix V −1.

Proof. For notational convenience, first consider a specific case where there is only a single
pair of complex conjugate eigenvalues and they are arranged to be the first two entries, i.e.
(D1, D2) =

(
D1, D1

)
and D = diag

([
D1, D1, D3, . . . , DNP

])
. For each eigenvector BVk = VkDk,

so BV1 = V1D1 and BV2 = V2D2. Then BV2 = V2D2, so BV2 = V2 × D2 = V2D1, therefore
V2 = V1, and V2 = V1.

Regarding (S1, S2), these are the last N rows of (V1, V2). Therefore, given V2 = V1, then
S2 = S1.

To establish that the first two rows of V −1 are a CCP, first define a block-diagonal per-
mutation matrix A as A = diag([A2, INP−2]), where INP−2 is the (NP − 2)× (NP − 2) identity
matrix, and A2 is:

A2 =

[
0 1
1 0

]
= A−1

2 (8)

and note that A2 = A−1
2 is apparent from A2

2 being the 2× 2 identity matrix. The product V A
interchanges the first two columns of V , so V A =

[
V1, V1, V3, . . . , VNP

]
= V . Taking the inverse

gives:

(V A)−1 =
(
V
)−1

A−1V −1 = V −1

AV −1 = V −1 (9)

The product AV −1 interchanges the first two rows of V −1, so AV −1 = V −1 establishes that the
first two rows of V −1 are a CCP. That is, in full with

[
V −1

]
k
denoting each row of V −1:

AV −1 = V −1

A



[
V −1

]
1[

V −1
]
2[

V −1
]
3

...[
V −1

]
NP

 =



[
V −1

]
1[

V −1
]
2[

V −1
]
3

...[
V −1

]
NP

 (10)
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hence: 

[
V −1

]
2[

V −1
]
1[

V −1
]
3

...[
V −1

]
NP

 =


[V −1]1
[V −1]2
[V −1]3
...

[V −1]NP


so
[
V −1

]
2

= [V −1]1 and
[
V −1

]
1

= [V −1]2. For the remaining rows,
[
V −1

]
k

= [V −1]k means
those rows must be real.

When D contains more than a single set of CCP eigenvalues, the procedure above is applied
to each eigenvalue pair (Dk, Dk+1) =

(
Dk, Dk

)
. Hence

(
Dk, Dk

)
will be associated with

(
Vk, Vk

)
and

(
Sk, Sk

)
and, using a permutation matrix A with A2 at each (k, k + 1) block-diagonal entry,

(Vk, Vk+1) =
(
Vk, Vk

)
will be associated with

[
V −1

]
k+1

= [V −1]k.

Proposition 3 For CCP eigenvalues, the components (Xk,t, Xk+1,t) and (SkXk,t, Sk+1Xk+1,t),
and their forecasts

(
Dh
kXk,t, D

h
kXk+1,t

)
and

(
SkD

h
kXk,t, Sk+1D

h
kXk+1,t

)
will all be CCPs.

Proof. Xt = V −1
X = DP−1V −1Ȳt, and so (Xk,t, Xk+1,t) associated with a 2× 2 CCP eigenvalue

block will be: [
Xk,t

Xk+1,t

]
=

[
Dk 0

0 Dk

]P−1 [ [
V −1

]
1

[V −1]1

]
Ȳt

=

[
DP−1
k

[
V −1

]
1
Ȳt

DP−1
k [V −1]kȲt

]

=

[
DP−1

1

[
V −1

]
1
Ȳt

DP−1
k [V −1]1 Ȳt

]
(11)

so (Xk,t, Xk+1,t) =
(
Xk,t, Xk,t

)
. Given this result, then:

(SkXk,t, Sk+1Xk+1,t) =
(
SkXk,t, Sk ×Xk,t

)
=
(
SkXk,t, SkXk,t

)(
Dh
kXk,t, D

h
k+1Xk+1,t

)
=

(
Dh
kXk,t, D

h
k ×Xk,t

)
=
(
Dh
kXk,t, D

h
kXk,t

)
(
SkD

h
kXk,t, Sk+1D

h
k+1Xk+1,t

)
=

(
SkD

h
kXk,t, SkD

h
kXk,t

)
=
(
SkD

h
kXk,t, SkD

h
kXk,t

)
(12)

4 VAR companion matrix in data form

This section contains material related to Proposition 2 of the main text, i.e. first a proof that
the estimate of the VAR coeffi cient matrix from the data is β = yȲ ′L

(
Ȳ ′LȲL

)−1, and then a proof

that the VAR companion matrix may be expressed as B = Ȳ Ȳ ′L
(
ȲLȲ

′
L

)−1.

Proposition 4 Following Hamilton (1994) pp. 293-96, the summation form the log-likelihood
function for a VAR conditioned on the initial P observations of a given N × (P + T ) dataset
{ȳt}T1−P , is:

L
(

[β,Ωε] , {ȳt}T1−P
)

= −NT
2

log (2π)− T

2
log (det [Ωε])−

1

2

T∑
t=1

ε′tΩ
−1
ε εt (13)
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where εt = ȳt − βȲt−1. Maximizing this log-likelihood function results in the VAR coeffi cient
matrix estimate β = ȳȲ ′L

(
Ȳ ′LȲL

)−1 or β[n] = ȳ[n]Y
′
L (YLY

′
L)−1 for row n of β, where ȳ is an

N × T matrix of the ȳt data, and ȲL is an NP × T matrix of the Ȳt−1 data. The VAR variance
matrix estimate is Ωε = 1

T εε
′, where ε is the N × T matrix of the residuals εt.

Proof. Equation 13 may be equivalently expressed as:

L (·) = −NT
2

log (2π)− T

2
log (det [Ωε])−

1

2
tr
[(
ȳ − βȲL

)′
Ω−1
ε

(
ȳ − βȲL

)]
(14)

where tr[·] is the trace operator. To see the equivalence of both expressions, note that each
ε′tΩ
−1
ε εt =

(
ȳt − βȲt−1

)′
Ω−1
ε

(
ȳt − βȲt−1

)
in equation 13 gives a scalar result for the given

time t, and the summation adds the results for all times from 1 to T . Within equation 14,(
ȳ − βȲL

)′
Ω−1
ε

(
ȳ − βȲL

)
creates a T×T matrix with the results

(
ȳt − βȲt−1

)′
Ω−1
ε

(
ȳt − βȲt−1

)
on the diagonal, and those are summed using the trace operator.

Expanding the expression within tr[·] gives:

tr
[(
ȳ − βȲL

)′
Ω−1
ε

(
ȳ − βȲL

)]
= tr

[(
ȳ′ − Ȳ ′Lβ′

)
Ω−1
ε

(
ȳ − βȲL

)]
= tr

[
ȳ′Ω−1

ε ȳ − ȳ′Ω−1
ε βȲL − Ȳ ′Lβ′Ω−1

ε ȳ + Ȳ ′Lβ
′Ω−1
ε βȲL

]
= tr

[
ȳ′Ω−1

ε ȳ − 2Ȳ ′Lβ
′Ω−1
ε ȳ + Ȳ ′Lβ

′Ω−1
ε βȲL

]
(15)

where the last line combines ȳ′Ω−1
ε βȲL and Ȳ ′Lβ

′Ω−1
ε ȳ, given that tr[A′] = tr[A] where A is a

generic square matrix.
To find the matrix β that maximizes L (·), differentiate L (·) with respect to β′ and set the

result to zero, i.e.:

0 =
∂

∂β′
L (·)

= −0− 0 +
∂tr
[
ȳ′Ω−1

ε ȳ − 2Ȳ ′Lβ
′Ω−1
ε ȳ + Ȳ ′Lβ

′Ω−1
ε βȲL

]
∂β′

= −2Ω−1
ε ȳY ′L + 2Ω−1

ε βȲLȲ
′
L

βȲLȲ
′
L = ȳY ′L

β = yȲ ′L
(
ȲLȲ

′
L

)−1 (16)

where the third line uses two matrix calculus results,1 i.e. for generic matrices A, B, C, and X:

∂tr (AXB)

∂X
= BA

∂tr (AXBX ′C)

∂X
= BX ′CA+B′X ′A′C ′ (17)

The form for equation 16 makes it clear that each row β could be estimated by a separate
OLS regression of ȳt on Ȳt−1. That is, each row n of β = yȲ ′L

(
ȲLȲ

′
L

)−1 is β[n] = ȳ[n]Ȳ
′
L

(
ȲLȲ

′
L

)−1,
where ȳ[n] = [ȳn,1, . . . , ȳn,T ] is the 1×T vector of data for variable n. That expression is an OLS
regression of ȳ[n] on all of the lagged data.

1See Petersen and Pedersen (2012), which also contains the matrix calculus results subsequently used for Ωε.
I use the numerator layout convention.
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To find the variance matrix Ωε:

0 =
∂

∂Ωε
L (·)

= −T
2

∂

∂Ωε
log (det [Ωε])−

1

2
tr
[
ε′Ω−1

ε ε
]

= −TΩ−1
ε + εε′Ω−2

ε

TΩε = εε′

Ωε =
1

T
εε′ (18)

where the second and third lines respectively make use of the following results for generic matrices
A and B and an invertible square matrix X:

∂ log (det [X])

∂X
= X−1 (19)

∂tr
(
AX−1B

)
∂X

=
∂tr
(
AX−1B

)
∂X−1

∂X−1

∂X
= BA×−X−2

= −BAX−2 (20)

Proposition 5 The VAR companion matrix B may be expressed as B = Ȳ Ȳ ′L
(
ȲLȲ

′
L

)−1.

Proof. The matrices of data and lagged data, Ȳ and ȲL, may be expressed in partitioned form
as:

Ȳ =


ȳ
ȳ−1
...

ȳ−P+1

 =

[
ȳ
ȲL∗

]
; ȲL =


ȳ−1
...

ȳ−P+1

ȳ−P

 =

[
ȲL∗
ȳ−P

]
(21)

where ȳ is the N × T matrix of data yt for each period, each ȳ−p is the N × T matrix of lagged
data Ȳt−p, and ȲL∗ =

[
ȳ′−1, . . . , ȳ

′
−P+1

]′, an [NP −N ]× T matrix.
Ȳ Ȳ ′L

(
ȲLȲ

′
L

)−1 may therefore be expressed in partitioned form as:

Ȳ Ȳ ′L
(
ȲLȲ

′
L

)−1
=

[
ȳ
ȲL∗

]
Ȳ ′L
(
ȲLȲ

′
L

)−1

=

[
ȳȲ ′L

(
ȲLȲ

′
L

)−1

ȲL∗Ȳ
′
L

(
ȲLȲ

′
L

)−1

]

=

[
β

ȲL∗Ȳ
′
L

(
ȲLȲ

′
L

)−1

]
(22)

where β = ȳȲ ′L
(
ȲLȲ

′
L

)−1. The bottom block ȲL∗Ȳ ′L
(
ȲLȲ

′
L

)−1 is:

ȲL∗Ȳ
′
L

(
ȲLȲ

′
L

)−1
= ȲL∗

[
Ȳ ′L∗, ȳ

′
−P
] (
ȲLȲ

′
L

)−1

=
[
ȲL∗Ȳ

′
L∗, ȲL∗ȳ

′
−P
] (
ȲLȲ

′
L

)−1 (23)

6



ȲLȲ
′
L in partitioned form is:

ȲLȲ
′
L =

[
ȲL∗
ȳ−P

] [
Ȳ ′L∗, ȳ

′
−P
]

=

[
ȲL∗Ȳ

′
L∗ ȲL∗ȳ

′
−P(

ȲL∗ȳ
′
−P
)′

ȳ−P ȳ
′
−P

]
(24)

and Ȳ ȲL in partitioned form is:

Ȳ ȲL =

[
ȳ
ȲL∗

] [
Ȳ ′L∗, ȳ

′
−P
]

=

[
ȳ
[
Ȳ ′L∗, ȳ

′
−P
]

ȲL∗
[
Ȳ ′L∗, ȳ

′
−P
] ]

=

[
ȳȲ ′L[

ȲL∗Ȳ
′
L∗, ȲL∗ȳ

′
−P
] ] (25)

ȲL∗Ȳ
′
L

(
ȲLȲ

′
L

)−1 in partitioned form is therefore:

ȲL∗Ȳ
′
L

(
ȲLȲ

′
L

)−1
=

[
ȲL∗Ȳ

′
L∗, ȲL∗ȳ

′
−P
] [ ȲL∗Ȳ

′
L∗ ȲL∗ȳ

′
−P(

ȲL∗ȳ
′
−P
)′

ȳ−P ȳ
′
−P

]−1

= [A,B]

[
A B
C D

]−1

(26)

where A, B, C, and D in the present context are simply generic labels for the matrices to make
the partitioned form for ȲL∗Ȳ ′L

(
ȲLȲ

′
L

)−1 more apparent. In particular, equation 26 may be seen
as the two top blocks of the identity:[

A B
C D

] [
A B
C D

]−1

=

[
Idim(A) 0dim(A)×dim(D)

0dim(D)×dim(A) Idim(D)

]
(27)

where Idim(A) is the identity matrix, 0dim(A)×dim(D) is a matrix of zeros, and dim(·) gives the
relevant dimensions for each matrix in terms of the dimensions of the square matrices A and D.
Alternatively, the explicit expression for the inverse of a partitioned matrix may be used, i.e.:[

A B
C D

]−1

=

[
A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

]

=

[
A−1 +A−1BFCA−1 −A−1BF

−FCA−1 F

]
(28)

where F =
(
D − CA−1B

)−1. Therefore:

[A,B]

[
A B
C D

]−1

=
[
Idim(A) +BFCA−1 −BFCA−1,−BF +BF

]
=

[
Idim(A), 0dim(A)×dim(D)

]
(29)

Hence, with the substitutions A = ȲL∗Ȳ
′
L∗ and D = ȳ−P ȳ

′
−P , the expression ȲL∗Ȳ

′
L

(
ȲLȲ

′
L

)−1

is:

ȲL∗Ȳ
′
L

(
ȲLȲ

′
L

)−1
=

[
Idim(ȲL∗Ȳ ′L∗)

, 0dim(ȲL∗Ȳ ′L∗)×dim(ȳ−P ȳ′−P )

]
=

[
INP−N , 0[NP−N ]×N

]
(30)
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and therefore:

Ȳ Ȳ ′L
(
ȲLȲ

′
L

)−1
=

[
β

ȲL∗Ȳ
′
L

(
ȲLȲ

′
L

)−1

]
=

[
ȳȲ ′L

(
ȲLȲ

′
L

)−1

INP−N 0[NP−N ]×N

]
= B (31)

5 Wider context for the closed-form ergodic variance result

This section provides additional context and discussion for the ergodic variance result contained
in section 3.2 of the main text.

The ergodic variance result Ωy (∞) from section 3.2 is based on a solution to the discrete-
time Lyapunov equation. Using the notation from the main text, the Lyapunov equation is
BΩY (∞)B+ ΩEY = ΩY (∞) and its solution is the NP ×NP matrix ΩY (∞) = VXΩX (∞)V †X ,
from which the N ×N matrix Ωy (∞) = JΩY (∞) J ′ is obtained.

The more general context for the Lyapunov equation is solving for ΩA in AΩAA + Ω = ΩA

where the generic square matrix A and the generic symmetric matrix Ω may be dense, unlike the
sparse matrices B and ΩEY for a VAR with more than a single lag. As discussed in Doan (2010)
sections 4 and 5, there are a variety of methods for solving the general Lyapunov equation. The
method based on vectorization is:

vec (ΩA) = (IM2 −A⊗A)−1 vec (Ω) (32)

where M is the dimension of A, ΩA, and Ω. This expression is often presented in econometrics
textbooks, e.g. see Hamilton (1994) p. 265 and Lütkepohl (2006) eq. 2.1.39, but it involves
matrices of dimension M2. Doan (2010) highlights the computational ineffi ciency of the vec-
torization method, given the solution requires O

(
M6
)
arithmetic operations, whereas methods

that retain the original matrix dimensions, e.g. Kitagawa (1977) and Johansen (2002), require
O
(
M3
)
operations (including the allowance for eigensystem or Schur decompositions).

The method developed in the main text is therefore within the effi cient class of Lyapunov
equation solutions. It also has the relative advantage of intuition, i.e. the method used to obtain
the solution is the infinite limit of a finite solution. The example in the context of VARs from the
main text is obtaining the VAR ergodic variance ΩY (∞) as the limit of the finite-horizon FEV
expression ΩY (h). In this respect, my solution method parallels the continuous-time solutions
for ΩY (∞) and ΩY (h) developed in Rome (1969) for the first-order multivariate stochastic
differential equation (which accommodates higher-order equations by using a companion matrix).
The parallels are inherent, given VARs are a discrete-time analogue of the continuous-time case;
i.e. a VAR is a equivalent to to first-order multivariate stochastic difference equation (which
also accommodates higher-order differences by using a companion matrix).

One further observation related to the ergodic variance ΩY (∞) and the finite solution ΩY (h)
is that the FEV for a VAR may be equivalently expressed as ΩY (∞) and ΩY (h) relative to
ΩX (∞), i.e.:

ΩY (h) = ΩY (∞) + [ΩY (h)− ΩY (∞)] (33)

where [ΩY (h)− ΩY (∞)] may be calculated as VX [ΩX (h)− ΩX (∞)]V †X , and the elements of
[ΩX (h)− ΩX (∞)] are:

[ΩX (h)]ij − [ΩX (∞)]ij = −ΩEX ,ij

(
DiDj

)h
1−DiDj

(34)

Therefore, regardless of the method used to obtain ΩY (∞), that result may be used in con-
junction with the closed-form adjustment [ΩY (h)− ΩY (∞)] to obtain ΩY (h) for an arbitrary
horizon.
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6 Real AR2 forms for CCP eigenvalues

This section provides details related to my comments in section 3.3 of the main text that the
AR1 processes and components associated with CCP eigenvalues could be expressed in real
forms based on the AR2 companion matrix, but why it is preferrable to use AR1 processes and
forms where possible.

I first show how eigenvalue pairs may be expressed using the AR2 companion matrix, and
then use that result to re-express CCP AR1 processes and their associated forecasts in real
AR2 form. However, the point forecast expressions for the latter require powers of the AR2
companion matrix, which does not have a closed-form solution based on a scalar powers (unless
converted back to AR1 form). An alternative is to express the point forecasts in terms of real
scalar cosine and sine functions, as shown in Proposition 8. While useful for exposition, this
would be unwieldy for applications, and more so if extended to variance expressions. Therefore,
Proposition 9 provides the FEVs and ergodic variances for CCPs of EVAR components on the
basis of AR1 components.

Proposition 6 For distinct eigenvalues, the AR2 companion matrix Φ[k] is related to the 2× 2
diagonal eigenvalue matrix as follows:

D[k] = U−1
[k] Φ[k]U[k] (35)

where:

D[k] =

[
Dk 0
0 Dk+1

]
; U[k] =

[
Dk Dk+1

1 1

]
; Φ[k] =

[
φk φk+1

1 0

]
(36)

with (Dk, Dk+1) a real eigenvalue pair or CCP eigenvalues. Powers of D[k] may be expressed as:

Dh
[k] = U−1

[k] Φh
[k]U[k] (37)

Proof. The companion matrix of a scalar AR2 with distinct eigenvalues may be expressed as
the following eigensystem decomposition:[

φk φk+1

1 0

]
=

[
Dk Dk+1

1 1

] [
Dk 0
0 Dk+1

] [
Dk Dk+1

1 1

]−1

(38)

which is evident by direct evaluation, i.e.:[
φk φk+1

1 0

]
=

[
Dk Dk+1

1 1

] [
Dk 0
0 Dk+1

]
1

Dk −Dk+1

[
1 −Dk+1

−1 Dk

]
=

1

Dk −Dk+1

[
D2
k D2

k+1

Dk Dk+1

] [
1 −Dk+1

−1 Dk

]
=

1

Dk −Dk+1

[
D2
k −D2

k+1 DkD
2
k+1 −D2

kDk+1

Dk −Dk+1 0

]
=

1

Dk −Dk+1

[
(Dk −Dk+1) (Dk +Dk+1) − (Dk −Dk+1)DkDk+1

Dk −Dk+1 0

]
=

[
Dk +Dk+1 −DkDk+1

1 0

]
(39)

so φk = Dk + Dk+1 and φk+1 = −DkDk+1 which, from Hamilton (1994) p. 30, are AR2
coeffi cients expressed in terms of distinct AR2 eigenvalues.
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Powers of Dh
[k] are then:

Dh
[k] =

(
U−1

[k] Φ[k]U[k]

)h
= U−1

[k] Φ[k]U[k] × U−1
[k] Φ[k]U[k] × . . .× U−1

[k] Φ[k]U[k]

= U−1
[k] Φh

[k]U[k] (40)

Proposition 7 For CCP eigenvalues (Dk, Dk+1) =
(
Dk, Dk

)
, the associated EVAR processes,

their forecasts, and their component forecasts may be expressed in real form based on the AR2
companion matrix.

Proof. For CCP eigenvalues, the process for [Xk,t, Xk+1,t]
′ is:

X[k],t = D[k]X[k],t−1 + EX,[k],t (41)

where:

X[k],t =

[
Xk,t

Xk,t

]
; D[k] =

[
Dk 0

0 Dk

]
; X[k],t−1 =

[
Xk,t−1

Xk,t−1

]
; EX,[k],t =

[
EX,k,t
EX,k,t

]
(42)

which may be transformed to AR2 form as follows:

X[k],t = D[k]X[k],t−1 + EX,[k],t

= U−1
[k] Φ[k]U[k]X[k],t−1 + EX,[k],t

U[k]X[k],t = Φ[k]U[k]X[k],t−1 + U[k]EX,[k],t

Z[k],t = Φ[k]Z[k],t−1 + EZ,[k],t (43)

Z[k],t will be real, given:

U[k]X[k],t =

[
Dk Dk

1 1

] [
Xk,t

Xk,t

]
= [2 Re (DkXk,t) , 2 Re (Xk,t)] (44)

and likewise Z[k],t−1 = U[k]X[k],t−1 and EZ,[k],t = U[k]EX,[k],t will also be real.
Using Dh

[k] = U−1
[k] Φh

[k]U[k], forecasts of X[k],t may be expressed in real AR2 form, i.e.:

Et
[
X[k],t+h

]
= Dh

[k]X[k],t

= U−1
[k] Φh

[k]U[k]X[k],t

Et
[
U[k]X[k],t

]
= Φ[k]U[k]X[k],t

Z[k],t+h = Φh
[k]Z[k],t (45)

where Z[k],t+h = U[k]X[k],t+h will be real, as for Z[k],t = U[k]X[k],t earlier.
The sum of CCP forecast components may be expressed in real AR2 form, i.e.:

SkD
h
kXk,t + SkD

h
kXk,t

=
[
Sk, Sk

] [ Dh
k 0

0 Dk
h

] [
Xk,t

Xk,t

]
=

[
Sk, Sk

]
Dh

[k]X[k],t

=
[
Sk, Sk

]
U−1

[k] Φh
[k]U[k]X[k],t

= [Rk, Rk+1] Φh
[k]Z[k],t (46)
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where [Rk, Rk+1] will be real given:

U−1
[k] =

1

2 Im (Dk)

[
1 −Dk

−1 Dk

]
(47)

and so: [
Sk, Sk

]
U−1

[k] =
1

2 Im (Dk)

[
Sk, Sk

] [ 1 −Dk

−1 Dk

]
=

1

2 Im (Dk)
[2 Im (Sk) , 2 Im (DkSk)] (48)

Proposition 8 CCP forecast components may be expressed as real trigonometric functions, i.e.:

Dh
kXk,t +Dh

kXk,t = 2rhk cos (hθk) Re (Xk,t)− 2rhk sin (hθk) Im (Xk,t) (49)

and:

SkD
h
kXk,t + SkD

h
kXk,t

= Re (Sk) · 2rhk [cos (hθk) Re (Xk,t)− sin (hθk) Im (Xk,t)]

− Im (Sk) · 2rhk [cos (hθk) Im (Xk,t) + sin (hθk) Re (Xk,t)] (50)

Proof. Express CCPs of Sk, Xk,t, Dk, and Dh
k in terms of their real and imaginary components,

i.e.:

Sk = Re (Sk)± i Im (Sk)

Xk,t = Re (Xk,t)± i Im (Xk,t)

Dk = rk exp (±iθk)
Dh
k = rhk exp (±ihθk)

= rhk [cos (hθk)± i sin (hθk)] (51)

where r = |Dk| and θk = cos−1 [Re (Dk) / |Dk|]. Then:

SkD
h
kXk,t + SkD

h
kXk,t

= [Re (Sk) + i Im (Sk)] · rhk [cos (hθk) + i sin (hθk)] · [Re (Xk,t) + i Im (Xk,t)]

+ [Re (Sk)− i Im (Sk)] · rhk [cos (hθk)− i sin (hθk)] · [Re (Xk,t)− i Im (Xk,t)] (52)

There are eight terms in each expansion of the last two lines, i.e.:

rhk · [Re (Sk) + i Im (Sk)] · [cos (hθk) + i sin (hθk)] · [Re (Xk,t) + i Im (Xk,t)]

= rhk cos (hθk) Re (Sk) Re (Xk,t)− rhk sin (hθk) Re (Sk) Im (Xk,t)

−rhk cos (hθk) Im (Sk) Im (Xk,t)− rhk sin (hθk) Im (Sk) Re (Xk,t)

+irhk sin (hθk) Re (Sk) Re (Xk,t) + irhk cos (hθk) Re (Sk) Im (Xk,t)

−irhk sin (hθk) Im (Sk) Im (Xk,t) + irhk cos (hθk) Im (Sk) Re (Xk,t) (53)

and:

rhk · [Re (Sk)− i Im (Sk)] · [cos (hθk)− i sin (hθk)] · [Re (Xk,t)− i Im (Xk,t)]

= rhk cos (hθk) Re (Sk) Re (Xk,t)− rhk sin (hθk) Re (Sk) Im (Xk,t)

−rhk cos (hθk) Im (Sk) Im (Xk,t)− rhk sin (hθk) Im (Sk) Re (Xk,t)

−irhk sin (hθk) Re (Sk) Re (Xk,t)− irhk cos (hθk) Re (Sk) Im (Xk,t)

+irhk sin (hθk) Im (Sk) Im (Xk,t)− irhk cos (hθk) Im (Sk) Re (Xk,t) (54)
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Summing the two sets of results gives zero for the imaginary terms, and the real terms obtain
the expression in equation 50 The result for Dh

kXk,t +Dh
kXk,t could be obtained with a similar

expansion and cancellation, but an easier alternative is to substitute 1 = 1+0i for Sk in equation
50, hence Re (1 + 0i) = 1 and Im (1 + 0i) = 0, so:

Dh
kXk,t +Dh

kXk,t = 2rhk cos (hθk) Re (Xk,t)− 2rhk sin (hθk) Im (Xk,t) (55)

Proposition 9 For CCP eigenvalues, the associated FEV and ergodic variance components
[Ωy (h)]k&k+1 and [Ωy (∞)]k&k+1 may respectively be expressed as:

[Ωy (h)]k&k+1 = 2 Re

(
ΩEX ,k,k

1− |Dk|2h

1− |Dk|2
SkS

†
k

)
+ 2 Re

(
ΩEX ,k,k+1

1−D2h
k

1−D2
k

SkS
†
k

)
and:

[Ωy (∞)]k&k+1 = 2 Re

(
ΩEX ,k,k

1

1− |Dk|2
SkS

†
k

)
+ 2 Re

(
ΩEX ,k,k+1

1

1−D2
k

SkS
†
k

)
(56)

Proof. For distinct eigenvalues where (Dk, Dk+1) is either a pair of real eigenvalues or CCP
eigenvalues, the FEV of the forecast component SkDh

kXk,t + Sk+1D
h
k+1Xk+1,t is:

[Ωy (h)][k] = [Sk, Sk+1]

 ΩEX ,k,k
1−(DkDk)

h

1−DkDk
ΩEX ,k,k+1

1−(DkDk+1)
h

1−DkDk+1

ΩEX ,k,k+1
1−(DkDk+1)

h

1−DkDk+1
ΩEX ,k+1,k+1

1−(Dk+1Dk+1)
h

1−Dk+1Dk+1

[ S†k
S†k+1

]

= [Sk, Sk+1] [ΩX,k:k+1 (h)] [Sk, Sk+1]† (57)

where ΩX,k:k+1 (h) denotes the 2× 2 block of ΩX (h) associated with (Dk, Dk+1).
For CCP eigenvalues (Dk, Dk+1) =

(
Dk, Dk

)
:

[Ωy (h)]k&k+1 =
[
Sk, Sk

]  ΩEX ,k,k
1−|Dk|2h

1−|Dk|2
ΩEX ,k,k+1

1−D2h
k

1−D2
k

ΩEX ,k,k+1
1−D2h

k

1−D2
k

ΩEX ,k,k
1−|Dk|2h

1−|Dk|2

[ S†k
S†k

]

= ΩEX ,k,k
1− |Dk|2h

1− |Dk|2
SkS

†
k + ΩEX ,k,k

1− |Dk|2h

1− |Dk|2
SkS

†
k

+ΩEX ,k,k+1
1−D2h

k

1−D2
k

SkS
†
k + ΩEX ,k,k+1

1−D2h
k

1−D2
k

SkS
†
k

= 2 Re

(
ΩEX ,k,k

1− |Dk|2h

1− |Dk|2
SkS

†
k

)
+ 2 Re

(
ΩEX ,k,k+1

1−D2h
k

1−D2
k

SkS
†
k

)
(58)

The ergodic variance is limh→∞ [Ωy (h)]k&k+1, which is the result provided in the proposition.

7 EVAR components with repeated eigenvalues

This section provides details related to the discussion in section 3.3 that a 2 × 2 Jordan block
is required in the eigenvalue matrix when a repeated pair of eigenvalues is imposed on a VAR.
The related analysis proceeds analogous to the distinct eigenvalue with respect to the processes,
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components, and their forecasts, but based on the 2 × 2 Jordan block. Unlike the real AR2
forms in section 6 of this online appendix, the forecasts do have the convenience of closed-form
solutions based on scalar powers, although the derivations required to obtain them is more
involved than the elementary AR1 case.

Proposition 10 For a repeated eigenvalue pair, the process for X[k],t:

X[k],t = D[k]X[k],t−1 + EX,[k],t (59)

where:

X[k],t =

[
Xk,t

Xk+1,t

]
; D[k] =

[
Dk 1
0 Dk

]
; X[k],t−1 =

[
Xk,t−1

Xk+1,t−1

]
; EX,[k],t =

[
EX,k,t
EX,k+1,t

]
(60)

has closed-form solutions for forecasts of X[k],t, forecasts of [Sk, Sk+1]X[k],t, FEVs [Ωy (h)][k],
and the ergodic variance [Ωy (∞)][k].

Proof. From Hamilton (1994) p. 19, a Jordan block containing a repeated eigenvalue pair has
powers: [

D1 1
0 D1

]h
=

[
Dh

1 hDh−1
1

0 Dh
1

]
(61)

Using equation 61, closed-form forecasts of [X1,t, X2,t]
′ associated with the Jordan block are:

Et
[
X1,t+h

X2,t+h

]
=

[
D1 1
0 D1

]h [
X1,t

X2,t

]
=

[
Dh

1 hDh−1
1

0 Dh
1

] [
X1,t

X2,t

]
=

[
Dh

1X1,t + hDh−1
1 X2,t

Dh
1X2,t

]
(62)

and closed-form forecasts of the EVAR component is [Sk, Sk+1] [Xk,t, Xk+1,t]
′ are:

[S1, S2]

[
D1 1
0 D1

]h [
Xk,t

Xk+1,t

]
= [S1, S2]

[[
Dh

1X1,t + hDh−1
1 X2,t

Dh
1X2,t

]]
= S1D

h
1X1,t + S1 · hDh−1

1 X2,t + S2D
h
1X2,t (63)

Closed-form FEVs are [Ωy (h)][k] = [Sk, Sk+1] [ΩX (h)][k] [Sk, Sk+1]′ where

[Ωy (h)][k] = [S1, S2]

[
h−1∑
n=0

Dn
[k]ΩEX ,[k]

(
D′[k]

)n]
[S1, S2]′

= [S1, S2]

[
h−1∑
n=0

[
D1 1
0 D1

]n [
Ω11 Ω12

Ω12 Ω22

] [
D1 0
1 D1

]n] [
S′1
S′2

]
(64)

where ΩEX ,[k] is presented in generic form for notational convenience in what follows.

Each matrix Dn
[k]ΩEX ,[k]

(
D′[k]

)n
in [ΩX (h)][k] =

∑h−1
n=0D

n
[k]ΩEX ,[k]

(
D′[k]

)n
is:

Dn
[k]ΩEX

(
D†[k]

)n
=

[
Dn
k hDn−1

k

0 Dn
k

] [
Ω11 Ω12

Ω12 Ω22

] [
Dn
k 0

hDn−1
k Dn

k

]

13



The (1, 1) element is: [
DnΩEX

(
D†
)n]

11

=
[
Dn

1 , nD
n−1
1

] [ Ω11 Ω12

Ω12 Ω22

] [
Dn

1

nDn−1
1

]
= Ω11 ·D2n

1 + Ω12 · 2nD2n−1
1 + Ω22 · n2D2n−2

1 (65)

the (1, 2) element of is: [
DnΩEX

(
D†
)n]

12

=
[
Dn

1 , hD
n−1
1

] [ Ω11 Ω12

Ω12 Ω22

] [
0
Dn

1

]
= Ω12 ·D2n

1 + Ω22 · hD2n−1
1 (66)

and the (2, 2) element is: [
DnΩEX

(
D†
)n]

12

= [0, Dn
1 ]

[
Ω11 Ω12

Ω12 Ω22

] [
0
Dn

1

]
= Ω22 ·D2n

1 (67)

so therefore:

Dn
[k]ΩEX

(
D†[k]

)n
=

[
Ω11D

2n
k + 2nΩ12D

2n−1
k + n2Ω22D

2n−2
k Ω12D

2n
k + nΩ22D

2n−1
k

Ω12D
2n
k + nΩ22D

2n−1
k Ω22D

2n
k

]
(68)

The summation
∑h−1

n=0D
n
[k]ΩEX ,[k]

(
D′[k]

)n
therefore requires the summations

∑h−1
n=0D

2n
k ,∑h−1

n=0 nD
2n−1
1 , and

∑h−1
n=0 n

2D2n−2. These have closed-form expressions, as detailed in the fol-
lowing proposition and its proof below, and so [Ωy (h)][k] has a closed-form solution.

Proposition 11 The summations
∑h−1

n=0D
2n
k ,
∑h−1

n=0 nD
2n−1
1 , and

∑h−1
n=0 n

2D2n−2 and their re-
spective infinite limits

∑∞
n=0 (·) have closed-form solutions:∑h−1

n=0D
2n
1 =

1−D2h
1

1−D2
1

; limn→∞
∑h−1

n=0D
2n
1 = 1

1−D2
1∑h−1

n=0 nD
2n−1
1 =

D1−hD2h−1
1 +(h−1)D2h+1

1

(1−D2
1)
2 ; limn→∞

∑h−1
n=0 nD

2n−1 = D1

(1−D2
1)
2∑h−1

n=0 n
2D2n−2 = 1

D2
1
·
∑h−1

n=0 n
2xn
∣∣∣
x=D2

1

; limn→∞
∑h−1

n=0 n
2D2n−2 =

1+D2
1

(1−D2
1)
3

(69)

Proof.
∑h−1

n=0 x
n in closed-form is obtained as:

(1− x)

h−1∑
n=0

xn =

h−1∑
n=0

xn −
h−1∑
n=0

xn+1

= 1 +
h−1∑
n=1

xn −
[
h−2∑
n=0

xn+1

]
− xh

= 1− xh +
h−1∑
n=1

xn −
h−1∑
n=1

xn

= 1− xh
h−1∑
n=0

xn =
1− xh
1− x (70)
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and so:

h−1∑
n=0

D2n
1 =

1−D2h
1

1−D2
1

lim
n→∞

h−1∑
n=0

D2n
1 =

1

1−D2
1∑h−1

n=0 nx
n in closed-form is obtained as:

x
d
dx

h−1∑
n=0

xn = x
d
dx

(
1− xh
1− x

)

x (1− x)2
h−1∑
n=0

nxn−1 = −xhxh−1 (1− x) + x
(

1− xh
)

h−1∑
n=0

nxn =
x− hxh + (h− 1)xh+1

(1− x)2

and so:

h−1∑
n=0

nD2n−1
1 =

1

D1
·
h−1∑
n=0

n
(
D2

1

)n
=

1

D1
· D

2
1 − hD2h

1 + (h− 1)D2h+2
1(

1−D2
1

)2
=

D1 − hD2h−1
1 + (h− 1)D2h+1

1(
1−D2

1

)2
lim
n→∞

h−1∑
n=0

nD2n−1 =
D1(

1−D2
1

)2 (71)

∑h−1
n=0 n

2xn in closed-form is obtained as:

x
d
dx

h−1∑
n=0

nxn = x
d
dx

(
x− hxh − xh+1 + hxh+1

(1− x)2

)

x (1− x)4
h−1∑
n=0

n2xn−1 = x
(

1− xh − h2xh−1 + h2xh
)

(1− x)2

+2x
(
x− hxh − xh+1 + hxh+1

)
(1− x)

(1− x)3
h−1∑
n=0

n2xn = x
(

1− xh − h2xh−1 + h2xh
)

(1− x) + 2x
(
x− hxh − xh+1 + hxh+1

)
h−1∑
n=0

n2xn =
x+ x2 − h2xh +

(
2h2 − 2h− 1

)
xh+1 − (h− 1)2 xh+2

(1− x)3 (72)

and so:
h−1∑
n=0

n2D2n−2 =
1

D2
1

·
h−1∑
n=0

n2xn

∣∣∣∣∣
x=D2

1

(73)
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where
∑h−1

n=0 n
2xn
∣∣∣
x=D2

1

denotes substituting D2
1 for x in the closed-form solution on the right-

hand side of equation 72, and:

lim
n→∞

h−1∑
n=0

n2D2n−2 =
1

D2
1

· D
2
1 +D4

1(
1−D2

1

)3
=

1 +D2
1(

1−D2
1

)3 (74)

8 Complete set of ergodic variance results

This section provides additional ergodic variance results related to the second application in sec-
tion 4 of the main text. These include the ergodic variances of the individual EVAR components,
and also the cumulative contributions of the EVAR components.

The left side of table A1 contains the ergodic variance results for all of the individual EVAR
components. These are [Ωy (∞)]k = SkΩX,k,kS

†
k = ΩX,k,kSkS

′
k for the real eigenvalues, and the

top N ×N block is the example for [Ωy (∞)]1 contained in the main text, i.e.:

[Ωy (∞)]1 =

 1.92 2.40 3.72
2.40 3.01 4.65
3.72 4.65 7.19

 (75)

For the CCP eigenvalues (D3, D4):

[Ωy (∞)]3&4 = [S3, S4]

[
ΩX,3,3 (∞) ΩX,3,4 (∞)

ΩX,3,4 (∞) ΩX,4,4 (∞)

]
[S3, S4]†

= [S3, S4] [ΩX,3:4 (∞)] [S3, S4]† (76)

where ΩX,3:4 (∞) denotes the 2× 2 block of ΩX (∞) associated with (D3, D4).
The individual EVAR component results do not account for covariances between the different

EVAR components, i.e. the off-diagonal elements of ΩX (∞), such as ΩX,1,2 (∞) or ΩX,1,3:4 (∞).
Therefore, summing the individual EVAR components results, i.e. [Ωy]1 + [Ωy]2 + [Ωy]3&4 +
[Ωy]5 + [Ωy]6, will not give Ωy (∞) from the main text, i.e.:

Ωy (∞) =

 2.18 1.19 1.60
1.19 7.55 5.81
1.60 5.81 8.42

 (77)

The cumulative expression that accounts for covariances is:

[Ωy (∞)]1:k = [S1, . . . , Sk] [ΩX,1:k (∞)] [S1, . . . , Sk]
† (78)

where ΩX,1:k denotes the k × k sub-matrix from the first row and column of ΩX to row k and
column k. The cumulation of contributions to the ergodic variance Ωy (∞) is shown on the
right-hand side of table A1. Ωy (∞) is the full cumulation of ergodic variance components, i.e.
the last matrix on the right-hand side, which is also evident from:

Ωy (∞) = [Ωy (∞)]1:6

= [S1, . . . , S6] [ΩX,1:6 (∞)] [S1, . . . , S6]†

= SΩX (∞)S† (79)
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Table A1: Ergodic variance components and cumulation
[Ωy]k [Ωy]1:k

u π r u π r

u 1.92 2.40 3.72 1.92 2.40 3.72
k = 1 π 2.40 3.01 4.65 2.40 3.01 4.65

r 3.72 4.65 7.19 3.72 4.65 7.19
u 1.01 0.91 —1.73 3.88 4.34 2.09

k = 2 π 0.91 0.83 —1.56 4.34 4.91 2.90
r —1.73 —1.56 2.97 2.09 2.90 7.00
u 3.94 —1.20 —2.53 2.20 1.31 1.54

k = 3&4 π —1.20 0.83 0.68 1.31 8.21 5.46
r —2.53 0.68 1.64 1.54 5.46 8.30
u 0.00 0.02 —0.01 2.18 1.19 1.60

k = 5 π 0.02 0.09 —0.07 1.19 7.57 5.76
r —0.01 —0.07 0.06 1.60 5.76 8.23
u 0.00 0.00 —0.00 2.18 1.19 1.60

k = 6 π 0.00 0.00 —0.00 1.19 7.55 5.81
r —0.00 —0.00 0.02 1.60 5.81 8.42

A point of note from table A1 is that the components 5 and 6 are both immaterial, both as
individual components [Ωy]5 and [Ωy]6, and their contributions to Ωy. That is the cumulation
of the first four components [Ωy]1:4,1:4 ' Ωy. The immateriality of components 5 and 6 may also
be seen from the last two panels of figure 1.

9 VAR estimates with a zero eigenvalue constraint

This section contains the results for the first example of the third application in section 4 of the
main text, i.e. estimating the VAR subject to the eigenvalue constraint D6 = 0.

Table A2: VAR coeffi cient and covariance matrix estimates
coeffi cients covariances

β1 β2 Ωε

βu 1.37 —0.02 0.03 —0.46 0.04 —0.01 0.11 —0.02 —0.12
βπ —0.34 1.12 0.15 0.30 —0.22 —0.08 —0.02 0.67 0.20
βr —0.65 —0.09 0.77 0.66 0.18 0.13 —0.12 0.20 0.87

Table A3: VAR eigensystem parameters

k 1 2 3 4 5 6
Dk 0.97 0.78 0.72+0.13i 0.72—0.13i 0.07 0.00
Sk,u 0.52 —0.34 —1.68+0.23i —1.68—0.23i —0.10 —0.07
Sk,π 0.63 —0.60 1.14—0.78i 1.14+0.78i —0.67 —0.46
Sk,r 1.00 1.00 1.00 1.00 1.00 1.00

10 VAR estimates with a repeated eigenvalue constraint

This section contains the results for the second example of the third application in section 4 of
the main text, i.e. estimating the VAR subject to the eigenvalue constraint D3 = D4.
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Table A4: VAR coeffi cient and covariance matrix estimates
coeffi cients covariances

β1 β2 Ωε

βu 1.35 —0.02 0.03 —0.43 0.04 —0.00 0.11 —0.02 —0.12
βπ —0.34 1.14 0.12 0.29 —0.24 —0.05 —0.02 0.67 0.20
βr —0.63 —0.08 0.74 0.62 0.16 0.16 —0.12 0.20 0.87

Table A5: VAR eigensystem parameters

k 1 2 3 4 5 6
Dk 0.97 0.735 0.725 0.725 0.20 —0.14
Sk,u 0.56 —1.33 —1.44 8.14 —0.18 —0.02
Sk,π 0.63 0.42 0.59 —15.08 —1.22 —0.16
Sk,r 1 1 1 1 1 1

11 VAR estimates with a median-unbiased eigenvalue constraint

This section contains the results for estimating the VAR with D1 set to the median-unbiased
estimate of D1 from the initial VAR, i.e. MU(D1) = 0.9920.

Table A6: VAR coeffi cient and covariance matrix estimates
coeffi cients covariances

β1 β2 Ωε

βu 1.37 —0.02 0.03 —0.46 0.04 —0.01 0.11 —0.02 —0.12
βπ —0.36 1.15 0.12 0.34 —0.25 —0.03 —0.02 0.67 0.20
βr —0.68 —0.06 0.74 0.70 0.15 0.18 —0.12 0.20 0.87

Table A7: VAR eigensystem parameters

k 1 2 3 4 5 6
Dk 0.99 0.75 0.72+0.15i 0.72—0.15i 0.22 -0.15
Sk,u 0.43 —0.55 —1.71+0.18i —1.71—0.18i —0.22 —0.02
Sk,π 0.75 —0.55 1.33—0.86i 1.33+0.86i —1.23 -0.12
Sk,r 1 1 1 1 1 1

12 VAR estimates with a unit root eigenvalue constraint

This section contains the results for estimating the VAR with the imposed constraint of D1 = 1.

Table A8: VAR coeffi cient and covariance matrix estimates
coeffi cients covariances

β1 β2 Ωε

βu 1.37 —0.02 0.03 —0.46 0.04 —0.01 0.11 —0.02 -0.12
βπ —0.36 1.15 0.12 0.34 —0.25 —0.03 —0.02 0.67 0.21
βr —0.68 —0.06 0.74 0.70 0.15 0.18 —0.12 0.21 0.88

Table A9: VAR eigensystem parameters

k 1 2 3 4 5 6
Dk 1.00 0.75 0.72+0.15i 0.72—0.15i 0.22 -0.15
Sk,u 0.40 —0.55 —1.71+0.17i —1.71—0.17i —0.22 -0.02
Sk,π 0.78 —0.55 1.34—0.85i 1.34+0.85i —1.23 -0.12
Sk,r 1 1 1 1 1 1
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