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Abstract

We address the determination of bitcoin prices and decentralized security. Users forecast
the transactional and resale value of holdings, pricing the risk of malicious systemic attacks.
Miners contribute resources to protect against attackers, competing for block rewards. Bitcoin’s
design leads to multiple equilibria: the same technology and fundamentals are consistent with
sharply different price and security levels. Bitcoin’s monetary policy can lead to welfare losses
and deviations from quantity theory. Price–security feedback amplifies fundamental shocks’
volatility impact and leads to boom–busts not driven by fundamentals. We show how Bitcoin’s
viability versus fiat currency depends on relative acceptability and inflation protection.
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The rapid growth of Bitcoin has sparked heated debates. The issue of bitcoin1 price determina-

tion and volatility is particularly elusive. On the one hand, those in investment and entrepreneurial

circles often argue that the price reflects fundamental factors such as the security of the underpin-

ning blockchain technology. A prominent view in the academic and policy communities, on the other

hand, is that bitcoins are just a bubble that will eventually burst, and therefore, prices are mean-

ingless. Bitcoin’s persistently high price volatility is frequently offered as evidence of disconnection

from fundamentals.2 While there could be elements of truth from both perspectives, reaching a

consensus is challenged by the fact that traditional monetary and asset pricing models were not

designed around a decentralized system, such as Bitcoin.

Two crucial differences are immediately recognizable in the system designed by Nakamoto (2008):

the security model and its monetary policy. Security is paramount to any financial network, since

transfers of ownership require verification, and it should be difficult for an attacker to manipulate

historical records. In a centralized system, a specific trusted agent—such as a central bank, govern-

ment, or a corporation—assumes such responsibility. In Bitcoin, however, verification and updates

to the system ledger (blockchain) rely on self-selected noncooperating agents, the miners. The re-

ward to successful miners includes a predetermined number of newly minted bitcoins, which is the

sole source of supply increase. Monetary policy is, therefore, not only driven by a software protocol,

but intrinsically connected to security. Understanding equilibrium price determination thus requires

disentangling how these breakthrough features interplay with bitcoins’ monetary function.

In this paper, we analyze an economy where consumers hold intrinsically useless bitcoins for

their transactional and/or speculative value. They internalize and price the risk of a system attack

that could compromise the ability to transfer bitcoins. The system security reflects the probability

of such an attack, driven by the balance of computing power—or hashrate—between an attacker and

honest miners (just miners hereafter) within the proof-of-work (PoW) contest. The attacker has a

given finite budget and a private interest in sabotaging Bitcoin. Miners are profit driven and invest
1We follow the standard practice in the developer community of using a lowercase b for the token (bitcoin) and

a capital B for the protocol or network (Bitcoin).
2For example, an early and influential paper by Yermack (2015) argues that Bitcoin fails to display the main

characteristics of money and can be best seen as a speculation device. Consistent with this view, most governments
around the world do not recognize Bitcoin as currency.
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according to the anticipated real value of block rewards. The critical structural mechanism at work

is that bitcoins simultaneously serve an exchange role for users and an incentive role for miners. We

refer to the general equilibrium of this economy as a decentralized monetary equilibrium (DME),

with the defining property that the bitcoin price and its system security are jointly determined.

Our first main result is that the interaction between users and miners gives rise to multiple

self-fulfilling equilibria, which can be ranked according to price–security levels. The reason is that,

if agents anticipate the value of bitcoins will be low, miners have little incentive to invest in com-

putational resources, and the security of the network is low. In that case, buyers do not wish to

accumulate large real balances, and the resulting valuation for bitcoins is low. The opposite is true

when agents anticipate the value of bitcoins will be high. A nonmonetary equilibrium, on the other

hand, is always reached if the attacker’s pockets are too deep, that is, if miners fail to acquire 50%

of the system’s computational power.

The important message here is that the security of PoW systems should be seen as an economic

outcome and not as an embedded property of its blockchain technology, as often presented to

businesspeople and regulators. Indeed, the same fundamentals and technology are consistent with

equilibria displaying sharply different security levels.3

We present this result in Section 2 within a stylized three-period setting that purposely ab-

stracts from a granular description of bitcoin exchanges. This allows us to distill the pivotal role of

user–miner complementarities and highlights that the conclusions therein are robust to alternative

representations of the demand for a means of exchange.4 Next, to establish welfare and monetary

policy analyses, Section 3 informs agents with more structure to make bitcoin-holding decisions, in

the spirit of the Lagos–Rocheteau–Wright (2005, 2005) environment. Our focus is on the properties

3While we focus on PoW—spanning Bitcoin and several cryptocurrencies—we expect this implication to extend
to blockchains using different consensus algorithms, as long as agents who invest in securing the system are compen-
sated with nominal tokens. For example, the proposed implementations of proof-of-stake in Ethereum contemplate
nominal block rewards for validators. Such proposed implementations include Casper the Friendly Finality Gadget,
a hybrid of PoW and proof-of stake (PoS), and CBC (correct-by-construction) Casper, entirely based on PoS (e.g.,
see https://vitalik.ca/general/2018/12/05/cbc_casper.html). In contrast, it does not automatically extend to digital
currencies such as Ripple’s XRP and Facebook’s Libra, whose security relies on trusted verifiers or external elements
that are price insensitive (see Section 1).

4For example, the function V according to which agents value bitcoins therein can be regarded as a money-
in-the-utility-function model, as representing a cash-in-advance constraint, or the reduced form of a search-based
model.
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of stationary DMEs; under certain conditions, we find an even number of them, which can be ranked

not only according to price and security, but also welfare.

Our second contribution is to assess the optimality of monetary policy in a PoW-based system.

We do so in regard to three plausible design goals: maximizing the token price, the system’s security,

and social welfare. A series of related results demonstrate the impossibility of simultaneously achiev-

ing these goals. To understand the trade-offs, take the valuation goal. A surprising finding is that

Bitcoin’s monetary policy can lead to violations of the quantity theory. Unlike with central banking,

changes in supply growth, ⇢, activate two opposing channels. A scarcity channel operates as usual,

with less debasing leading to higher token prices. However, there is a new security channel : a higher

mining reward incentivizes miners to invest, making the attacker’s efforts less dangerous. For some

equilibria, a value-optimal level for ⇢ exists; thus, a reduction in miners’ nominal reward—such as

quadrennial halvings—could leave the price unchanged or even decrease it.

The price-maximizing value is not necessarily optimal for aggregate welfare.5 This is because

bitcoin buyers, unlike a benevolent planner, do not internalize mining costs. Instead, the marginal

buyer weighs the expected trade benefit of holdings against the inflation tax embedded in mining

rewards—a transfer from users to miners here, with null aggregate effect. Therefore, price and wel-

fare are generally not jointly maximized. We establish conditions that rank these policies according

to fundamentals. We show that the ⇢ value that maximizes security is the highest and leads to both

socially excessive mining and a relatively low token price.

Our third contribution is to show how Bitcoin’s security model embeds price volatility ampli-

fication. We identify two separate mechanisms that are responsible for this conclusion, neither

of which being the direct observation that supplies rigidity makes it impossible to accommodate

demand fluctuations. The first mechanism concerns the amplification of fundamental shocks due

to price–security feedback, which we illustrate considering the repercussions of a decrease in the

number of bitcoin buyers. We show that this structural mechanism implies that a demand shock

5This is also in contrast with centralized money systems, where both the price of money and welfare are typically
highest under the Friedman rule. Replacing a central bank with miners can, therefore, introduce a structural gap
between the policies that are optimal for price and welfare.
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induces a more pronounced price movement for bitcoin than for other currencies.6

The second mechanism concerns the emergence of stochastic equilibria in which expectations

about future prices depend on sentiment, driven by the realization of a sunspot process. Any such

equilibrium is defined by a set of optimistic and pessimistic states and a transition probability

distribution. When optimistic states are observed, users and miners rationally expect high prices in

the future, leading to high bitcoin prices in the present moment, and vice versa. We show that the

multiplicity of stationary DMEs—stemming from Bitcoin’s security model—is a necessary condition

for the emergence of one such class of equilibria. Therefore, we argue that bitcoins are also more

prone to exhibit seemingly irrational price jumps than other currencies.7

Finally, we develop an extension in which consumers opt between bitcoins and a fiat currency.

While both are intrinsically worthless, we do not follow Kareken and Wallace (1981) in assuming per-

fect substitutability.8 Indeed, consumers anticipate retailers might not accept all forms of payment,

and they do not regard bitcoins and fiat currency as equally risky. We highlight three emerging

insights. First, a sufficient condition for bitcoins to command a positive price is for bitcoins to be

essential in some transactions.9 Second, when bitcoins are valued, one also finds multiple equilibria

with distinct price–security levels. This clarifies that multiplicity is inherent to Bitcoin’s design,

and not a consequence of a lack of payment alternatives. Third, the degree of bitcoin acceptability

imposes further restrictions on their value. For example, take the case in which all retailers accept

fiat currency, but some also accept bitcoins. We characterize a lower bound for the fiat currency

inflation—strictly higher than Bitcoin’s—that must be met for bitcoins to command a positive price.

This paper contributes to the small but growing literature on the economics of Bitcoin, blockchains,

6Moreover, we argue that the quantitative importance of the amplification mechanism depends on the sign of
the shock and the strength of the potential attacker. We provide a related quantitative analysis in Section C of the
Internet Appendix.

7Here, the impact of non-fundamental sources of uncertainty goes beyond price jumps. Due to miners’ rational
responses, the realization of a pessimistic state also implies that Bitcoin security can severely worsen, lowering the
network life expectancy as measured by the average time until a successful attack. In Section C of the Internet
Appendix, we simulate the distribution of attack times when agents ignore sunspots versus when they do not, and
find that the expected time can drop significantly when sunspots play a role.

8Therefore, the exchange rate indeterminacy result in Kareken and Wallace’s paper does not hold here.
9The sufficient condition that we establish could easily correspond to the use of bitcoins in the trade of criminalized

goods, as documented by Foley et al. (2018). Take the case of the sale of illegal drugs over the dark web. It seems
reasonable to regard sellers in that market as unable to accept other electronic forms of electronic payments, such as
debit and credit cards. We highlight several more such uses in the discussion section.
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and decentralized currencies.10 In these environments, the multiplicity of equilibria manifests in var-

ious forms. Among them, Biais et al. (2019) formalize the coordination among miners regarding

which blocks to append to the blockchain and establish conditions for stable consensus. Cong, He,

and Wang (2018; 2019) have developed a token valuation framework that generates feedback be-

tween adoption and price. Li and Mann (2020) show the role that initial coin offerings can play in

facilitating coordination in peer-to-peers platforms. Sockin and Xiong (2018) study decentralized

platforms where tokens serve as membership certificates that facilitate transactions, featuring com-

plementarity in membership demand. Our work complements these papers because we focus on a

different but not mutually exclusive mechanism that embeds equilibria with price–security feedback.

To distill our contribution, however, we intentionally abstract from additional multiplicity sources;

absent security concerns, our model always features a unique equilibrium.

Multiplicity can also arise in traditional monetary models due to well-known channels such

as entry externalities or storage costs (e.g., see Lagos et al., 2017, and the references therein),

which are not featured here.11 Also related are models of currency attacks against a central bank,

where multiplicity is often a consequence of strategic complementarities among speculators.12 Here,

there is no monetary authority, but we do feature strategic complementarities: users’ valuations

positively incentivize miners’ investment, which, in turn, reduces users’ risk exposure to a malicious

attack, raising valuations. Such a distinct complementarity manifests here to increase the payment

system’s defenses against sabotage, rather than induce an exchange-rate regime change. It also

brings attention to the interaction between agents’ beliefs and new economic fundamentals: the

primitives of mining and the security function (covered in Sections 2.2 and 2.3).

10A related stream of research studies the economics of protocols that allow participants to agree on a common
output that aggregates private inputs when some dishonest participants could attack the process. This question,
known as the Byzantine agreement, was originally studied by Pease, Shostak, and Lamport (1980) and Lamport,
Shostak, and Pease (1982). Nakamoto (2008) proposes a solution based on the PoW protocol.

11Equilibria multiplicity leads to price fluctuations driven by nonfundamental factors in Lagos and Wright (2003)
and Gu et al. (2019), who feature economies where agents exchange Lucas trees with negative real yields; and in
Asriyan et al. (2019), who focus on assets with heterogeneous payoffs under adverse selection. The environment here
is fundamentally different: bitcoins do not pay dividends, and we do not incorporate private information.

12For example, in Obstfeld (1996), a trader realizes a greater payoff attacking a fixed–exchange rate regime if
other traders also attack it. Strategic complementarities can also manifest through information feedback, as shown
by Goldstein et al. (2011), where coordination by speculators can persuade the monetary authority to abandon the
monetary regime due to weak fundamentals.
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Several contemporaneous papers emphasize one or more aspects of the intricate Bitcoin mining

ecosystem. While we focus on seigniorage-financed rewards, Easley et al. (2019) and Huberman et al.

(2019) analyze the determination of fees with heterogeneous transaction urgency. Cong, He, and Li

(2018) analyze risk sharing in mining pools, while Alsabah and Capponi (2019) analyze miners’ R&D

decisions. Budish (2018) analyzes the extent to which miners can defend Bitcoin against for-profit

and sabotage attacks. Lehar and Parlour (2019) analyze the possibility of miner collusion. While

their focuses differ, these papers take the value of bitcoin as a given. We contribute by developing

a framework where mining outcomes, bitcoin demand, and prices are jointly determined.13

Chiu and Koeppl (2019) and Kang (2020) analyze related monetary economies but focus on the

conditions under which double-spend attacks can be prevented as a function of the block confir-

mations required by retailers. Instead, we focus on the risk of sabotage attacks, which yield new

equilibria with different positive implications. From a protocol design perspective, Chiu and Koeppl

argue that it is optimal to finance the entire security budget with seigniorage, as in our setting,

rather than with fees. Therefore, our characterization of the socially optimal inflationary reward

complements their findings. A different and interesting angle on welfare is provided by Choi and

Rocheteau (2019), whose model treats mining as an occupational choice against other productive

uses, providing insights on output and social costs.

Also related is the literature on private monies pioneered by Hayek (1976) and recently fostered

by Bitcoin. Among others, Fernández-Villaverde and Sanches (2016) use a search-based model to

study competition among private currency issuers; Schilling and Uhlig (2019) study a Bewley-like

model with a publicly and a privately issued currency. Although these papers introduce valuable

features, they consider alternative payment systems to be perfect substitutes. We contribute in this

regard by introducing heterogeneity in acceptance and explicitly incorporating Bitcoin’s security

shortcomings. This allows us to refine the conditions under which bitcoins can be positively priced.

13There is also a recent related literature on “permissioned” blockchains, similar in spirit to the privately secured
token we use as a benchmark for Bitcoin. Besides monetary aspects, this literature focuses on implications for smart
contracts, central banking, corporate governance, transaction efficiency, and capital markets (e.g., Harvey (2016);
Malinova and Park (2017); Raskin and Yermack (2016); Yermack (2017)). Abadi and Brunnermeier (2018) provide a
formal analysis of the trade-offs involving public and permissioned blockchains. Hinzen et al. (2019) and Zimmerman
(2019) highlight limits to bitcoins’ usability due to design aspects of its public blockchain.
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1 Background

This section provides a description of how the Bitcoin security model, monetary policy, and attack

risk interrelate and clarifies some of our modeling choices. For brevity, we relegate supplemental

figures and technical details to Section A of the Internet Appendix (IA hereafter).

1.1 Security Model

Bitcoin’s history of transfers is periodically updated in a sequence of blocks. Which particular

miner adds a block is the result of a competitive process to solve a mathematical problem based

on a cryptographic algorithm.14 The winning miner is only compensated provided that the miner

respected a set of consensus rules that prevents fraud; otherwise, the investment in computer power

is entirely lost.15 The winning miner’s compensation, which we shall call the system’s security

budget, consists of the block reward plus any fees paid by users. Thus far, the block reward is the

dominant component of the security budget. For the period from July 2010 to January 2020, on a

daily basis, the block reward accounts for a median (mean) proportion of 99.21% (97.57%).16

Because the block reward is paid in bitcoins, which have no intrinsic value, miners must in-

put the token price into their decisions. Such a connection finds strong empirical support in the

price–hashrate time series displayed in Figure 1. Intuitively, the higher the price, the greater the

incentive to respect the consensus rules, and the greater the cost to manipulate the ledger’s history.

Thus, the token price, p, and the security of the system, indexed by S, are linked. We note that

this link is not exclusive to Bitcoin; it is present in blockchain-based networks such as Ethereum,

Monero, and Litecoin. To distinguish it from alternatives, we refer to this security model as intrinsic.

Definition 1. We say that a token’s security is intrinsic when p 6= p
0 implies S(p) 6= S(p0).

Otherwise, we refer to the token’s security as extrinsic.
14The solution to the problem is included in each new block and proves that the miner solved the problem—thus

the term proof-of-work.
15For a textbook introduction to Bitcoin’s protocol rules, see Antonopoulos (2017).
16See Section A.1 of the IA. An exception is the late part of 2017, when block congestion raised the proportion

coming from fees quite substantially. We note that, while the block reward is part of the Bitcoin protocol, the amount
collected in fees is not: fees depend on users’ decisions. Nakamoto (2008) predicts that fees will slowly replace inflation
over time as the total supply slowly approaches its asymptotic limit. There is no built-in protocol feature, however,
that increases fees and smooths miners’ nominal income.
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Figure 1. Bitcoin price and network hashrate: August 2010 to January 2020

In contrast, Ripple is a digital currency system in which approved network members verify

transactions. Although transfers of the network token, XRP, are subject to fees to avoid spamming,

verifiers (e.g., a trusted bank) are not compensated for their services with XRP. Thus, we label

Ripple’s security model as extrinsic. The same can be said of similar permissioned blockchains such

as Libra, Facebook’s proposed digital currency.17

Extrinsic security could stem from the ability to exclude certain participants, reverse trans-

actions, access regulators or the legal system, and so on. Identifying case-by-case sources is not

our present focus. What is essential for our purposes is that pricing tokens with intrinsic security

requires one to simultaneously account for their monetary and security functions, as in Figure 2.

1.2 Monetary Policy

Bitcoin’s protocol-driven monetary policy is rigid: no authority can regulate the nominal supply.

The only source of bitcoin creation is the block reward that miners receive. Because of its prepro-

grammed issuance scheme, future bitcoin supply can be approximated quite precisely, as illustrated

in Section A.3 in the IA. The initial inflationary reward was set to 50 bitcoins by Nakamoto and is

17See https://libra.org/en-US/white-paper and see Section A.2 in the IA for additional examples.
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Figure 2. Intrinsic and extrinsic security models

programmed to decline by 50% every 210,000 blocks, or approximately four years.18 We can view

each period between halving as an inflation era for Bitcoin. Within an era, nominal supply growth

decreases slightly, since total supply increases but the reward stays constant.

1.3 Risk of Network Attacks

If there were no concerns about malicious players, the security task that miners perform would

be trivial. Numerous types of mining-based attacks have been described in the computer science

literature (see Conti et al., 2018; Kaiser et al., 2018l Liu et al., 2019, and the references therein).

From an economic perspective, Budish (2018) considers two broad groups: double-spend and sab-

otage attacks. Put succinctly, in a double-spending attack, the attacker seeks to purchase a good

through a bitcoin transfer and, upon delivery, to broadcast an alternative chain history that includes

a transfer of the same coins the attacker’s own wallet, rendering the original payment invalid.

The goal of a sabotage attack, on the other hand, is not to transfer the same bitcoins multiple

times, but to hurt the network. Rosenfeld (2014) argues that such an effort can be motivated by

external profit sources, such as protecting the profits of an incumbent—for example, the banking

system or payment processing corporations—or profiting from a short position.19 The motivation

18The first reward halving from 50 to 25 bitcoins occurred on November 11, 2012. The second halving occurred on
July 9, 2016. The third halving took place on May 11, 2020. The last reward halving is estimated for 2140; further
reductions would require a transfer to miners of less than 10�8 bitcoins, or one satoshi, the protocol’s unit of account.
See, for example, https://en.bitcoin.it/wiki/Controlled_supply.

19The scope for sabotage attacks has arguably increased recently, since many fiat-settled derivative products exist
(e.g., from the CME Group), allowing for convenient short exposures to the bitcoin price. Although we do not model
a separate bitcoin derivative or lending market that facilitates shorting, our framework embeds a negative relation
between the efforts of the attacker and the underlying price.
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could also originate in the success of a competing cryptocurrency, especially when the same min-

ing equipment is used. Arguably stronger in scale is the possibility of not-for-profit actions by

a governmental agency. Economic superpowers such as the United States and China and multi-

lateral agencies such as the G20, have repeatedly expressed concerns about the national security,

environmental, and financial stability hazards of cryptocurrencies.20

Like Budish, we argue that it is important to consider sabotage attacks explicitly. A double-

spend attacker is interested in preserving the value of the recovered bitcoins and that of any special-

ized mining equipment. This fact creates a natural limit to the attack scale, to avoid a sharp price

drop once the attack is identified. Moreover, being a for-profit effort, double-spend attacks might

not be as much of a concern for Bitcoin relative to small blockchains, given its immense mining

investment: they embed huge risky bets. Also critical is the fact that retailers can protect their

wealth by requiring multiple-block payment confirmations before transferring goods. A saboteur is

not dissuaded by the lack of within-network profits.21

Equally important, from the perspective of equilibrium pricing, is the fact that a sabotage attack

is more akin to an aggregate source of risk, since it affects all participants, not just one or a few

retailers. Therefore, we embed within a general equilibrium economy a stylized saboteur who could

create disruptive blockchain histories (forks) designed to undermine confidence and destroy Bitcoin.

20As cryptocurrencies gain economic importance, one finds an increasing number of signals of such future ac-
tions. To cite a few examples, U.S. Treasury Secretary Steven Mnuchin has warned that cryptocurrencies pose a
national security risk (see https://www.forbes.com/sites/billybambrough/2019/07/16/bitcoin-and-crypto-suddenly-
branded-a-national-security-issue/#327b254f1a59). Policymakers expressed concerns during the Libra Congress
hearing. Before the U.S. Congress Committee of Financial Services, the Federal Reserve Chairman Jerome Pow-
ell has warned that private digital currencies could come “fairly quickly” in a way that is “systemically impor-
tant” (see, e.g., https://www.ccn.com/bitcoin-price-soars-jerome-powell-confirms-cryptos-threat-to-dollar). The G-
20 group has repeatedly warned against the money laundering and terrorist financing risks that crypto-assets cre-
ate. For instance, on June 9, 2019, a G20 Finance Ministers and Central Bank Governors Meeting communiqué
asked the Financial Stability Board to “monitor risks and consider work on additional multilateral responses as
needed” (https://www.mof.go.jp/english/international_policy/convention/g20/communique.htm). Agustín Carstens
Carstens, head of the Bank for International Settlements, described bitcoin as “a combination of a bubble, a Ponzi
scheme and an environmental disaster” in a speech given on February 6, 2018, at the University of Goethe. Chinese
officials’ efforts to ban bitcoin mining (see, e.g., https://www.reuters.com/article/us-china-cryptocurrency/china-
wants-to-ban-bitcoin-mining-idUSKCN1RL0C4) are consistent with increasing the chances of a successful sabotage
attack. Kaiser et al. (2018) provide an extensive discussion of potential hashrate-based attacks from China.

21According to the website Crypto51 (crypto51.app), as of February 2020, the market cost of matching Bitcoin’s
hashrate was approximately USD 860,000/hour. While that rate is prohibitively high for most individuals interested
in a double-spend attack, it is not so for economic superpowers, or even global financial corporations.
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2 Prices, Mining, and Security in a Three-Period Economy

In this section we show how user–miner complementarities in Bitcoin lead to equilibrium multiplicity,

using a simple finite horizon setting. The characterizations of the mining game and attack risks

serve as building blocks in the remainder of the paper.

2.1 Environment and Bitcoin Users

Consider two dates, t and t + 1. At t, a continuum of n homogeneous agents can produce and

consume a perishable good whose price acts as the numeraire. The marginal utility of consumption

and disutility of production are unitary. There is also an intrinsically useless and transferrable

token, bitcoin, in supply B. Agent i can purchase any non-negative amount Bit at a price pt that

is taken as given, thereby becoming a Bitcoin user. Agents acquire bitcoins because, if its transfer

system is operational at an interim subperiod t
0, they expect to find uniquely beneficial exchange

opportunities with probability f . We assume here that any holder i of a real balance bit = ptBit

values those opportunities according to V (·), a continuous, strictly increasing and concave function

that is twice differentiable and satisfies V (0) = 0, V 0(0) = +1, and V (b̃) = b̃ for some b̃ > 0.

The presence of a malicious agent, a saboteur, exposes all Bitcoin users to the risk of a systemwide

attack between t and t
0. The attack outcome is captured by the realization of a binary random

variable x̃t: xt = 1 indicates that the network survives the attack and a new block of transactions

will be added to the predetermined ledger, an event with probability S; xt = 0 indicates a successful

attack, an event with probability 1� St. Following an attack, the network is unusable and bitcoins

become worthless. We refer to S, a key endogenous object, as the security function.

At t + 1, if the attack failed, users sell any remaining bitcoin holdings in a liquidation market

displaying perfectly elastic demand at an uncertain price pt+1. Users’ expectation of future prices is

given by Etpt+1 = StE1
t pt+1+(1� St)⇥0, where E1

t denotes the expectation operator conditional on

xt = 1 and any available information at t. We require beliefs to satisfy R := E1
t

pt+1

pt
<

1
�S

; otherwise,

agents’ expected utility would be increasing in bitcoins and demand would be unbounded.

Given beliefs and time preference � 2 (0, 1), agents maximize expected utility at t, cit � lit +
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Et (V (Bitpt) + �cit+1), over goods consumption c, disutility of production l, and bitcoin holdings,

subject to the budget constraints Bitpt+ct  lt and ct+1  Bitpt+1. Expanding the expectation and

incorporating the constraints, agent i’s program becomes: maxbit�0 St (fV (bit) + (1� f) �bitR)�bit.

It is helpful to consider a benchmark where security S 2 (0, 1] stems from a trusted institution

rather than miners’ actions. There can be at most one equilibrium price in that case. Provided

V
0(0) is sufficiently large, a solution must exist, and we can associate any such security level S with

a corresponding equilibrium price pt > 0. To understand how the interrelation between users and

miners can affect this conclusion, we turn to mining activities.

2.2 Miner Competition

At the beginning of t, m � 2 identical risk-neutral miners invest in computing power to win a block

verification reward within a noncooperative PoW game. Miners are subject to a one-period reward

lock. If a miner wins a block reward within t, the miner receives the reward at t + 1, sells it at

the prevailing price and consumes the proceeds.22 We assume that the block size is large enough to

include all contemporaneous transactions and that miners cannot commit to excluding transactions

based on user fees. Hence, we concentrate on equilibria in which fees are negligibly small.23

Due to the random nature of the PoW race, the proportion of blocks verified by miner j is

proportional to its computer power contribution. If a block confirmation occurs, j wins with prob-

ability P(hj , h�j) =
hj

H
, H = hj + h�j . We assume that the PoW difficulty level adjusts to ensure

that each block is verified within the corresponding period.24

Miners act as price takers and form expectations about next period’s bitcoin prices. Conditional

on winning, a miner expects revenues equal to  E1
t pt+1, where  represents the block reward

in units of bitcoins. We simplify things by considering a single program for all miners given by

22As part of the decentralized verification process, each reward is locked for 100 blocks, or approximately 16 2
3

hours. After that period, miners can freely spend the proceeds.
23The Bitcoin Core wallet sets a minimum default fee of 10 nanobitcoins per vbyte (which represents 1/4,000,000th

of the maximum size of a block). Such a tiny fee ensures that miners do not regard the transfer as spam. Fees are
not mandatory, though.

24Mining difficulty in the Bitcoin network is determined approximately every two weeks (2,016 10-minute blocks)
as a function of the average block confirmation time over that period. Therefore, the difficulty level is constant in
the short run, but not over an extended period. In the Ethereum network (Metropolis release), difficulty levels are
recomputed with every new block. As of August 2020, the average block confirmation time was within 14–15 seconds.
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maxhj�0 P(hj , h�j) ⇥ � E1
t pt+1 � C(hj), where C : hj ! R+ is the cost of mining function, an

increasing, twice-differentiable function that satisfies C
00(h) � 0 and C(0) = 0.25 We search for a

symmetric Nash equilibrium, which yields the following characterization of miners’ investment.

Lemma 1. In a symmetric mining equilibrium, (i) the system’s hashrate, H
⇤
t , is given by mh

⇤
t ,

where

h
⇤
C

0(h⇤) =

✓
m� 1

m2

◆
� E1

t pt+1| {z }
Exp. real block reward

. (1)

Moreover, (ii) H
⇤ increases with the nominal block reward and the expected bitcoin price, (iii)

dH
⇤

dm
> 0, and (iv) if C 0 increases point-wise for every h, H⇤ then decreases.

Part (ii) of Lemma 1 reflects the intuition that, ceteris paribus, a higher nominal reward or a

higher expected bitcoin price induces miners to invest in more computing resources. The fact that

miners are homogeneous yields a monotonically positive relation between the number of miners and

the system hashrate. Point (iv) highlights that the cost of mining does not affect the allocation of

the reward across miners, but is directly related to the total computing power in the system.

Hereafter, we focus on the case of linear mining costs ⇥ h, where  > 0 captures the costs of

inputs, electricity, and any leasing hardware per unit of computational power.26 Such a case best

represents mining firms that are small enough to act as price takers in input markets.27

2.3 Security Function

We consider a source of aggregate risk in the form of a sabotage attack. Because such an attack

on Bitcoin has not yet been observed, the specifics are not readily available. For concreteness, we

25Miners form rational expectations about the price but act on a subjective probability of receiving the reward
equal to one, thus displaying bounded rationality. Rather than on miners, throughout the paper we focus on how
bitcoin users price security risks. Relaxing this rationality constraint imposes no additional complexity here, since it
solely requires multiplying miners’ revenue by S. However, doing so could increase the number of general equilibrium
allocations by making S(H(p)) a correspondence, without adding significant insights.

26To help with the interpretation, we can further disaggregate the mining cost equation as cost=electricity price
(USD/kW h) * efficiency hardware (kW h/GH/s) * hashrate (GH/s). In this specification, electricity power is
measured in dollars per kilowatt–hour and efficiency is measured in the number of kilowatt–hours to maintain a
hashrate of a gigahash per second. For a given hardware efficiency, parameter  can be interpreted as the product of
the first two terms on the right-hand side of the equation.

27We consider an extension with a convex cost function in Section D of the IA.
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consider the realization of a disruptive fork with k > 1 blocks, by which we mean the emergence

of one (or multiple) alternative block history that creates a confidence crisis among users. As an

example, the saboteur could mine numerous empty blocks, denying service to other users and/or

inducing merchants to stop accepting bitcoins. The attacker could also employ hash power to

generate multiple persistent forks in the blockchain, thereby undermining consensus and persuading

honest miners to leave. We interpret parameter k as the minimum block length for such a disruptive

fork to lead to a collapse in bitcoin demand.28

What is the likelihood of such an event? The answer must depend on the balance of computing

resources between honest and malicious agents. To avoid excessive complexity, we regard the sabo-

teur as a single agency endowed with a constant use-it-or-lose-it budget across periods that affords

a hashrate A > 0. To assign probabilities to outcomes, imagine that once H has been determined

on date t, a subgame arises in which the saboteur and miners play a race that ends when the former

generates a k-block fork. At each step of the subgame, a PoW-like gamble takes place where miners

and the saboteur have computing power given by Ht and A. The deficit of k blocks decreases by one

with probability ↵ := A

A+Ht
, and increases by one with probability 1� ↵ = Ht

A+Ht
, as in a binomial

random walk. If this race continued forever within the subgame, the probability of eliminating the

deficit of k blocks would be
⇣

↵

1�↵

⌘
k

=
⇣

A

Ht

⌘
k

, provided ↵ <
1
2 , and one otherwise.29

Next, we specify a security function that is consistent with the subgame above:

S (Ht, A) =

8
>><

>>:

1�
⇣

A

Ht

⌘
k

Ht > A,

0 else.
(2)

Function (2) allows for a tractable pricing analysis and, as Nakamoto first highlighted, it captures

the notion that Bitcoin is not viable when honest miners control less than 50% of the hash power.

Moreover, (2) satisfies the following intuitive properties: limH!+1 S = limA#0 S = 1, limH#A S = 0,
28Alternatively, one could also consider sabotage attacks of heterogeneous strength. For example, the saboteur

could periodically broadcast disruptive chains of length shorter than k, followed by negative valuation changes, not
necessarily taking the price to zero. However, the key mechanism we model, connecting valuations to security, would
still be present.

29This probability is a known result in gambler’s ruin problems (e.g., Feller, 1968, Ch. XIV); we therefore omit
the proof.
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and, if Ht > A, SA < 0 and SH > 0. We informally refer to increases in A as increases in the

saboteurs’ budget. In what follows, we take k and A as a given and use (2) to endogenize the

security level in the general equilibrium.

2.4 Indeterminacy of Price and Security in PoW Blockchains

Unlike for the extrinsic security benchmark, it is only by studying the relations between demand

fundamentals, mining incentives, and the depth of the saboteur’s pockets that we can assess whether

a general equilibrium allocation exists, one in which the bitcoin price and security are jointly de-

termined. To begin, we note that a situation in which the value of bitcoins stays at zero always

represents an equilibrium. Absent external subsidies, if the price is zero, miners do not contribute

security resources; in turn, users do not exchange any amount of goods for unsecured tokens.

Given token-holding decisions and market clearing, nBit = B, miners’ optimal investment in

(1), and the security function in (2), we can reduce the system of optimality conditions to:

S (H (pt) , A)

✓
fV

0
✓
B

n
pt

◆
+ (1� f) �R

◆
= 1. (3)

We shall show that, if it does exist, an equilibrium with a positive bitcoin price is no longer unique.

Proposition 1. Assume extrinsic security S. A single equilibrium exists if and only if V
0 (0) >

1
f
( 1
S
�(1�f)�R). Assume intrinsic security and a saboteur’s hashrate A > 0. There is a population

size n̂(A) such that if n > n̂(A), a general equilibrium must exist. Generally, if a general equilibrium

exists, there is an even number of them, which can be ranked by price–security levels.

Proposition 1 highlights that the multiplicity of equilibria originates in the strategic comple-

mentarities between users and miners. The intuition is that, if the value of bitcoins is perceived to

be low, honest miners have little incentive to invest in computational resources, and the security

of the network is low. In that case, agents do not wish to accumulate large real balances, and the

resulting valuation for bitcoins is low. The opposite is true when the value of bitcoins is perceived

to be high, making a high-value, high-security equilibrium self-fulfilling.
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Figure 3. Equilibrium determination of bitcoin price and security
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Figure 3 illustrates the equilibrium determination. Note that, for any given A, first, if the bitcoin

price is sufficiently low, that is, p  pm := H
�1 (A), the miners’ economic incentive is not strong

enough to amass 50% of the hashrate. In that case, the saboteur always succeeds, and the viability

of bitcoins as a means of exchange vanishes. A general equilibrium is found when �(pt) = 1, where

� represents the left-hand side of (3). Two such equilibria exist in the displayed economy, which

can be ranked according to price and security levels: pH > pL and SH > SL.

Second, a general equilibrium can be found, provided the number of interested buyers is high

enough. Intuitively, if competition for bitcoins is strong enough, the anticipated value of the nominal

block reward is sufficient to induce an investment H > A. Conversely, one can establish that, for a

fixed n, the existence and properties of an equilibrium depend on how resourceful the attacker is.

At one extreme, when A ! 0, the bitcoin economy converges to that with S ! 1, a full-security

economy with a unique equilibrium. At the other extreme, one can identify the maximum value

that A can take to be compatible with an equilibrium. The dashed curve in Figure 3 illustrates an

economy in which A is too high for an equilibrium with a positive price and security to exist.

To sum up, the noncooperative interaction between users and miners can bootstrap an equi-

librium with a positive bitcoin price and some protection against malicious attackers. However,

there is no one-to-one mapping between technological primitives and the security level: the same
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fundamentals are compatible with a strongly or a weakly secured payment system. Put simply, one

can only assess the security properties of a particular equilibrium allocation in a system such as

Bitcoin, but not that of its blockchain technology.

3 Decentralized Monetary Framework and Welfare

The previous section elicited a fundamental mechanism in the Bitcoin system that generates a

multiplicity of price–security ranked equilibria. In the remainder of the paper, we seek to understand

its implications for welfare, the design of monetary policy, and price fluctuations. In this section, we

therefore consider a more granular microfoundation for the use of bitcoins as a means of exchange,

with an endless horizon, since we rule out token holdings providing enjoyment or dividend flows.30

3.1 Bitcoin Demand

An endless sequence of dates is divided into two stages where different markets for perishable goods

operate, both with Walrasian pricing. The first-stage market is frictionless, while the second-stage

market is subject to meeting frictions, similar to the competitive equilibrium of Rocheteau and

Wright (2005). Following convention, we refer to the first and second stages as the centralized

market (CM) and the decentralized market (DM). All agents can produce and consume the CM

good, which acts as the numeraire. Agents are divided into two types according to their roles in the

DM: sellers can produce, but do not wish to consume; buyers wish to consume, but cannot produce.

Such heterogeneity generates demand for bitcoins as a means of exchange; for buyers to consume

the good in the DM—the bitcoin good. A buyer meets a seller with probability f and trades at a

price z. All agents are anonymous, so credit arrangements are not possible.

Instead of assuming a liquidation market, the intertemporal consistency of users’ holding de-

cisions depends on an explicit demographic process. Each period t, a continuum of n buyers

who live for three subperiods is born. Buyers born at time t have a lifetime utility given by
30Besides these essential motivations, the analysis in this section allows us to characterize dynamic stability

properties of equilibria. For brevity, we defer such an analysis to Section B of the IA. Furthermore, in Section C
therein, we develop a quantitative version of the model that illustrates how positive and welfare outcomes can sharply
differ across equilibria.
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Figure 4. Timeline

ct� lt+u (qt)+ �ct+1, where c and q represent the consumption of the numeraire and bitcoin goods.

Old buyers sell their bitcoin holdings, enjoy consuming the CM good with the proceeds, and then

die.31 Unless otherwise stated, u is assumed to be have the same properties as V in Section 2.1.

A fundamental difference is that u is now defined over the consumption of goods. Sellers born at t

do not need to accumulate bitcoins in that period’s CM. Those who meet a buyer in the period’s

DM can produce any amount at a unitary marginal disutility of production. At the first stage of

period t + 1, sellers can exchange any bitcoin holdings for the CM good, from which they derive

linear utility. Therefore, their lifetime utility is �qt + �ct+1.

Figure 4 summarizes the sequence of events in each period of this dynamic setting. On the supply

side, miners compete for block verifications in each stage, as in Section 2.2, and receive rewards

at the beginning of the subsequent CM. They do not consume the bitcoin good nor store bitcoins;

the winning miner sells the reward immediately after receiving it to consume.32 The resolution of

the sabotage attack happens between the CM and the DM, before buyers and sellers meet. The

fundamentals of security are as described by (2).

Buyers and sellers believe that the bitcoin price follows a Markov process, as follows. If bitcoins

are not valued at the beginning of time t, pt = 0, bitcoins will not be valued at any time s > t.

31As extensively discussed by Zhu (2008), the choice of linear utility for the CM good consumption makes this
combination of overlapping-generation and search elements to be observationally equivalent to that of Lagos and
Wright (2005), who present infinitely lived agents. Consistently with Zhu’s arguments, our results can be derived by
adopting either specification.

32The fact that miners sell their rewards once available best represents a situation in which miners do not regard
themselves as having a speculative advantage over others and/or in which their main inputs (i.e., electricity) are not
paid in bitcoins. In a general equilibrium, though, holding bitcoins across periods is costly, implying that miners
would not hold them if given a choice.
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Instead, if pt > 0, the expected price next period is given by StE1
t pt+1: the price is zero following

an attack. A buyer i born at time t maximizes intertemporal expected utility,

max
Bit,cit,lit

cit � lit + St

0

@f max
q
d

it
Bitpt

zt

⇢
u

⇣
q
d

it

⌘
+ �E1

t ((Bit �
ztq

d

it

pt
)pt+1)

�
+ (1� f) �E1

t (Bitpt+1)

1

A (4)

subject to the budget constraint Bitpt + cit  lit. Given that credit is not available, buyers in the

DM are constrained by ztq
d

it
 Bitpt, where q

d

i
is the quantity agent i demands. The efficient

exchange quantity, q⇤, is given by u
0(q⇤) = 1, so that the buyer’s marginal utility equals the seller’s

marginal cost of production. Let b
⇤ denote the real bitcoin transfer required to get q

⇤.

The value that a seller j born at time t can obtain is given by:

max
q
s

jt

⇢
�q

s

jt + �E1
t

✓✓
ztq

s

jt

pt

◆
pt+1

◆
, 0

�
. (5)

It is apparent from (5) that, provided sellers break even, which requires �E1
t

pt+1

pt
= 1

zt
, they are

indifferent between any two positive production levels. We construct equilibria with this property;

otherwise, the solution to the sellers’ problem would require either a null or unbounded production.

Next, we characterize the demand for bitcoin holdings in a partial equilibrium, that is, taking

{St}t�0 as a given sequence.

Lemma 2. In any equilibrium, for all t, �StE1
t

pt+1

pt
 1 and pt = �StE1

t pt+1(1+f(u0(q(Bd
t )�1)+). If

the inequality is strict, all buyers demand the same bitcoin holdings Bt

n
, the bitcoin good market clears

at qt < q
⇤, and there is a unique market clearing price pt = �StE1

t pt+1(1 + f(u0(�Bt

n
E1
t pt+1)� 1)).

This lemma bounds the risk-adjusted expected holding returns that are compatible with a mon-

etary equilibrium. When �StE1
t
pt+1�pt

pt
< 0, carrying a balance is costly; buyers will try to avoid

doing so and will demand quantities of the bitcoin good below the efficient level q⇤. The optimality

condition in the lemma implies a positive relation between the security of the system and the de-

mand for bitcoins. It also expresses that pt equals the present value of the risk-adjusted expected

price, plus a term reflecting bitcoins’ usefulness as a liquidity instrument. Such a term is driven

by the probability of finding trading opportunities, f , and by the Lagrangian multiplier associated
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with relaxing the constraint zq  b on the trade surplus, (u0 (q) � 1)+. We follow convention in

referring to the latter as the liquidity premium, which is positive if q < q
⇤ and equals zero otherwise.

3.2 DME: Multiplicity and Welfare

We define a DME as a sequence
�
Bit, q

d
t , q

s
t , ht, zt, pt

 ⌧
t=0

of consumption, production, and saving

decisions by buyers and sellers, hashrate decisions by miners, and positive prices, such that, for all

t, buyers’ and sellers’ decisions satisfy (4) and (5); miners maximizes expected profits; security is

given by (2); and all markets clear. Because equilibria depend on beliefs about the future value of

bitcoins, the conceivable set is large. Instead of characterizing every possible equilibrium, we focus

on whether there is a stationary DME with constant real quantities, and, if so, whether it is unique.

Bitcoins’ supply growth is roughly constant within a four-year inflation era,33 and is expected

to halve at a quadrennial frequency until 2140. Unless one introduces a form of block congestion,

there is no stationary DME with a vanishing nominal growth ⇢t ! 1; a perennially shrinking block

reward leads to a security level that is inconsistent with a positive bitcoin price. Characterizing

a functioning system that approaches the last halving event requires fees that somehow offset the

loss of seigniorage, as argued by Nakamoto (2008). Accordingly, we pursue a two-part strategy. In

the remainder of this section, we search for stationary DMEs with a positive and constant ⇢ > 1,

constant real balances, and bitcoin prices that users and miners (conditionally) expect to decrease

at the same rate, E1
t

pt+1

pt
= ⇢

�1 for all t. We consider that to be a helpful approximation within an

inflation era.34 Subsequently, we study the effect of supply growth changes in Section 4.

Accordingly, we reduce the model as follows. Given Bt+1 = Bt + 2 t, a constant ⇢ implies
 t

Bt
= ⇢�1

2 . From (1), we can then write

H(b) =

✓
m� 1

m

◆
�

⇢

✓
⇢� 1

2

◆
b, (6)

33This is especially the case since the reward halving in 2016, when the third inflation era began. For example,
the nominal growth rates at the beginning and the end of the third inflation era are 4.17% and 3.58%; those for the
fourth era, which started in May 2020, are 1.79% and 1.67%; and those for the fifth era, which starts in 2024, are
0.83% and 0.81%. As the outstanding supply increases, the ratio between these rates mechanically approaches one.

34Given constant real quantities, falling bitcoins prices are merely a consequence of growing supply with a constant
number of bitcoin buyers. Accordingly, we can regard the steady-state characterization here as the one expected once
the user base becomes stable.
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and thereby express security as a function of b and A. Rearranging buyers’ optimal demand condition

in Lemma 2, for real balances below b
⇤, we must have

bt =
�

⇢
S (bt+1, A) bt+1

�
1 + f

�
u
0 (q (bt+1))� 1

� 
, (7)

where q (bt+1) =
�

⇢

bt+1

n
. Denoting the right-hand side of equation (7) as D, a stationary solution is

a value bss such that bss = D(bss). Equivalently, bss must satisfy:

f
�
u
0 (q (bss))� 1

�
=

⇢

S (bss, A) �
� 1. (8)

The condition in (8) expresses that bss makes the marginal usefulness of bitcoins equal to their

marginal carrying cost. To see this, note that the left-hand side depends on the probability of

finding trading opportunities and on the liquidity premium, expressing the payoff from a marginal

unit of wealth that is liquid; that is, it can be used to acquire more of the bitcoin good. The

right-hand side measures how costly it is for buyers to carry bitcoins and can be interpreted as a

risk-adjusted analogue of the nominal interest rate, iB (b) := ⇢

S(b,A)� � 1.35 Such a cost is positively

related to the tax from inflationary rewards, and it is negatively related to the system’s security.

An analysis of miners’ and users’ optimality in (6) and (8) allow us to characterize existence

and uniqueness of a DME. Three main features are shared with the finite horizon setting in the

previous section: a monetary equilibrium is not viable for b  bm = pmB; if the number of users is

sufficiently large, the system can support an equilibrium with a strictly positive bitcoin price and

security; such an equilibrium is not unique. Figure 5 illustrates the determination of equilibria in

the (bt+1, bt) space. Two stationary DMEs exist in the displayed economy, bL and bH , which we refer

to as the low and the high equilibria, respectively. The figure also displays the extrinsic security

benchmark, D. Where its unique equilibrium b is relative to bL and bH depends on the value of S.36

35To facilitate this interpretation, imagine a one-period bond issued in the CM at a nominal price of Q bitcoins
that cannot be used as a medium of exchange in the DM. This bond is redeemable for one bitcoin in the following
CM, but defaults with probability 1� S. For agents to be indifferent about holding it, the bitcoin price of the newly
issued bond must solve Qtpt = �SE1

tpt+1. Therefore, in a steady state, Q = �S

⇢
, and the implicit nominal interest

rate is iB = 1
Q

� 1 = ⇢

�S
� 1. Since S  1, ⇢ > 1 is sufficient for iB > 0.

36If security is extrinsic, there is a single stationary monetary equilibrium if and only if u0 (0) > 1
f
( ⇢

�S
+ f � 1).
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Figure 5. Decentralized monetary equilibria: Existence and multiplicity
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However, this setting enables an explicit welfare assessment of equilibria. We take social welfare

to be the sum of the surplus amounts that buyers, sellers, and miners realize, assigning a zero weight

to the attacker,37 net of mining costs. At the beginning of each period, each miner commits to invest

an irrecoverable amount h(bss) in each stage. Using (6), the period’s welfare can be expressed as

Wss = E (u (q (bss))� q (bss))n| {z }
bitcoin good trade surplus in the DM

�
✓
m� 1

m

◆
(⇢� 1)

�

⇢
bss

| {z }
,

aggregate mining investment

(9)

where the expectation is over security outcomes and trade opportunities in the bitcoin good market.

Only the DM surplus appear in (9), since exchanges in the CM represent zero-sum utility transfers.

Using (9), we establish two welfare properties. First, consider the case in which buyers formed

bitcoin demand decisions in the same environment, but sought to (altruistically) maximize (9)

instead of (4). Such a case resembles the problem of a constrained planner who cannot affect the

system design but internalizes mining costs. Perhaps surprisingly, the demand for bitcoins would

37Equivalently, one can consider any potential social benefits from a successful attack, such as regulation en-
forcement, to be offset by the attackers’ mining investment. The case with large positive attack externalities is less
interesting, since the planner can always set ⇢ at a level that is too low for a monetary equilibrium to exist. Alter-
natively, if the attack generated negative externalities, for example, discouraging investment elsewhere, the planner
would seek to increase the security budget further.
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then be higher. The reason is that balances’ carrying cost associated with (4), which input the

inflationary reward, can be shown to be above mining costs.38

Second, we can rank welfare outcomes across DMEs: the high equilibrium leads both to a higher

trade volume q and also to greater social welfare. Indeed, the equilibrium condition (8) implies that

an increase in the exchange quantity from qL to q̃, provided q̃ < q
⇤, leads to an enhancement in the

expected trade surplus that is greater than the corresponding increase in mining costs.

We summarize the main results in this section in the following proposition.

Proposition 2. A stationary DME must exist, provided n is sufficiently large. Generally, if it does

exist, there is an even number of them that can be ranked according to price, security, and welfare.

4 Implications for the Design of Monetary Policy under PoW

Nakamoto’s protocol prevents any agent, user or miner, from influencing bitcoins’ supply. Therefore,

analyzing monetary policy in the traditional sense of regulating the money supply is not possible.

Instead, this section adopts a protocol design perspective. The main results establish the opti-

mal monetary policy associated with three goals, namely, maximizing bitcoin’s market value, the

system’s security, and social welfare, and characterizes the relations among them.

4.1 Value-Optimal Monetary Policy

We begin by considering the optimal policy regarding market value. Recall that a central implication

of the quantity theory is that increases in the growth of nominal balances have a negative effect

on the price of money. This implication holds in our benchmark with extrinsic security. Increasing

supply growth ⇢ through direct transfers to agents, or a nominal dividend, has the effect of reducing

the equilibrium token price as it becomes less scarce.
38To see this, use bi = b

n
to express (4) as a choice over q: maxq�0 Sf (u (q)� q)� q

�
⇢

�
� S

�
. Similarly, combine

(6) and (9) to express the constrained planner’s objective as fS (u (q)� q)� m�1
m

(⇢� 1) q. The first-order conditions
require, for buyers, u0 (qbuyer) = 1 + 1

fS

�
⇢

�
� S

�
; for the constrained planner, u0 (qcp) = 1 + 1

fS

m�1
m

(⇢� 1). Since
⇢

�
� S >

m�1
m

(⇢� 1) > 0, and u
0 is strictly decreasing, it follows that qbuyer < qcp < q

⇤; therefore, bbuyer < bcp.
One can show that the general equilibrium of the economy where demand is based on (9) also features multiplicity.
Bitcoin prices would be higher in such an economy than in a DME if one compares the high equilibria, and lower if
one compares the low equilibria. The intuition is similar to a fundamental shift in demand in Section 5.1.
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Bitcoin is different, since we can distinguish two distinct channels by which changes in ⇢ affect

the bitcoin price. While the scarcity channel operates as above, there is a security channel that

is new to the Bitcoin economy. Since there are no dividends for bitcoin users, all new issuances

are restricted to miner rewards. Increasing the latter incentivizes miners’ investment, strengthening

resistance against a malicious player, thus generating upward price pressure.

The relative strength of each channel depends on the fundamentals. Intuitively, when ⇢ is low,

the security channel should be relatively stronger, and increases in ⇢ should have a positive price

effect; when ⇢ is high, the negative scarcity effect should dominate. We are interested in whether

there is a ⇢ value that finds the optimal balance in the sense of maximizing the market value of

bitcoins. The following proposition shows that we can characterize such value for a high DME.39

Proposition 3. The value-optimal nominal growth rate, ⇢V , is implicitly given by

✏S,⇢ (⇢V ) = 1� iB(⇢V ) + f

iB(⇢V ) + 1
�(bH), (10)

where bH is the highest solution to (8), S = S (bH , A), and � (bH) is the coefficient of relative risk

aversion at bH , and ✏S,⇢ := dS

d⇢

⇢

S
. If ⇢ < ⇢V , pH increases with ⇢; if ⇢ > ⇢V , pH decreases with ⇢.

Equation (10) expresses that ⇢V renders the marginal value of security gains equal to the

marginal impact on buyers’ and sellers’ carrying costs. To illustrate, consider the special case with

f = 1 and a constant � 2 (0, 1). The right-hand side of (10) becomes 1��. Since ✏S,⇢(⇢V ) = k(1�S)
S(⇢V �1) ,

⇢V = 1 + k(1�S)
(1��)S . From this we infer that an increase in k causing S ! 1 leads to ⇢V ! 1: as

security needs progressively diminish, the value-optimal amount of mintage approaches zero.

Proposition 3 implies that the behavior of the supply side of Bitcoin is fundamentally different

from that of traditional monetary economies, since the graph (⇢, pH (⇢)) is concave. The left of

Figure 6 illustrates this property. For values ⇢ > ⇢V , the negative impact of the scarcity channel

is stronger than that of the security channel, and the price declines. A direct implication is that,

unless ⇢ = ⇢V , the same pH is consistent with two different regimes, with low or high supply growth.

39For the low DME, one can show that, if a solution to equation (10) exists, it does not satisfy the second-order
conditions for a maximum.
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Besides protocol design concerns, Proposition 3 has practical implications for understanding

changes in bitcoin prices over time. Commentators often argue that a block reward halving causes

the bitcoin price to increase; in contrast, we find that the price effect of a change in ⇢ is non-

monotonic: the price can increase or decrease.40

To sum up, the general equilibrium relation between supply growth and price depends on the

environment, as in (10), and should thus be considered with more scrutiny than a simple application

of Fisher’s equation of exchange would suggest. Such careful consideration is particularly important

for Bitcoin, since its design prevents any issuances directed to holders; if one introduced these, a

violation of the quantity theory would become less likely.

4.2 Security-Optimal Monetary Policy

We now ask what is the supply growth rate that maximizes the system’s security? The answer links

to miner incentives. Naturally, miners’ investment is not based solely on the bitcoin price, but,

rather, the product between that price and the block reward. Provided such product increases, one

could observe that prices and miners’ hashrate move in opposite directions, as graphically illustrated

on the left panel of Figure 6 as one move to the right of ⇢V . Accordingly, we seek to determine

what is the growth rate that maximizes miners’ expected income, which, in a steady state can be

expressed as ⇢�1
2

�

⇢
bss (⇢).41 It is clear that income is highest in the high DME, and its maximizing

value ⇢S is as follows.

Proposition 4. The supply growth rate that maximizes miners’ security budget is given by

bH

⇢S|{z}
Qty. effect

+ (⇢S � 1)

✓
1

⇢S

dbH

d⇢
� bH

⇢
2
S

◆

| {z }
value effect

= 0. (11)

The security-optimal rate ⇢S is higher than that maximizing the market value of bitcoin, ⇢V .

40To evaluate different scenarios quantitatively, in Section C.3 of the IA, we simulate events studies where ⇢ halves.
41Alternatively, one can seek to maximize miners’ seigniorage, ⇧, defined as the difference between miners’ real

reward and the cost of mining. However, miners’ seigniorage vanishes in the perfectly competitive limit m ! 1,
while security is highest. To see this, note that, in any stationary DME, ⇧ =

�
⇢�1
2

�
�

⇢

bss
m

.
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The proof is immediately evident, as follows. Since ⇢ > 1 in any DME, for (11) to hold, one

must have dbH(⇢S)
d⇢

< 0. From Proposition 3, real balances in the high DME decrease for values

higher than ⇢V , implying ⇢S > ⇢V . Intuitively, bitcoin buyers are concerned with both the inflation

tax and security risks. Minimizing the latter exclusively leads to a relatively weak user demand

and, thus, a lower token valuation.

4.3 Socially Optimal Monetary Policy

We are interested in this section in the optimal monetary policy from the perspective of a benev-

olent planner, denoted as ⇢W . We begin by considering the benchmark economy without mining

investment and a given security level S. In that case, the first-best DM surplus can be achieved by

⇢W = S� < 1.42 The intuition is that the net nominal growth must be negative so that the token

price appreciation is sufficient to compensate for attack risks and impatience, inducing buyers to

carry enough balances to achieve an efficient exchange.43 This is a version of the Friedman rule,

which is the optimal monetary policy in many monetary environments (Rocheteau and Nosal, 2017,

Ch. 6). The adjustment by S simply reflects the lack of a risk-free saving technology.

For Bitcoin, negative nominal growth is arguably unfeasible due to taxation challenges. More

importantly, ⇢W  1 would be undesirable with seigniorage-financed security, since a null exchange

surplus would be achieved with null security. In this regard, a Friedman rule cannot be optimal.

Instead, the socially optimal policy is implicitly given by dW
d⇢

(⇢W , b (⇢W )) = 0 from (9), subject

to the satisfaction of users’ and miners’ optimality in (6) and (8). We note that the social and private

benefits associated a change in ⇢ on the trade surplus coincide; buyers capture the entire surplus.

The social and private costs, however, are different. Buyers are concerned with balances’ carrying

costs regarding issuances received by the miners and attacks’ risk. All else equal, the planner is

involved with the amount invested in mining, not with buyers’ inflation tax; a mere transfer from

42Note that for St = S 2 (0, 1], we can express (8) as u
0 (q

ss
) = 1+ 1

f

⇣
⇢W

�S
� 1

⌘
. Therefore, ⇢

W
= S� implements

the efficient allocation: u
0 (q

ss
; ⇢

W
) = 1.

43A traditional implementation of the Friedman rule in fiat monetary systems involves taxation. Interestingly,
Cong et al. (2019) find that negative nominal growth is achievable in permissioned token platforms through owners’
buybacks and token burns.
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Figure 6. Bitcoin supply growth: Relations with price, security, and welfare

The left and middle (right) panels correspond to the utility function parameter � = 0.5 (� = 1.5).
All other parameters are as in the baseline calibration in Section C of the IA.
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(c) Welfare: ⇢W > ⇢V

users to miners. Hence, the monetary policy that most benefits buyers and that which is socially

optimal could differ. The planner finds that mining investment increases with ⇢ up to ⇢S ; the effect

on private carrying costs is ambiguous, since an increase in S could decrease the ratio ⇢

�S
.

The following proposition establishes the relation between the socially optimal monetary policy

and the considered alternatives.

Proposition 5. The socially optimal monetary policy ⇢W satisfies the following properties: (i)

⇢W > 1 > ⇢W ; (ii) ⇢W < ⇢S; and (iii) ⇢W < ⇢V provided S

⇣
✏S,⇢f

⇣
u(q)
q

� 1
⌘
� iB

⌘
<

m�1
m

at

⇢ = ⇢V , and ⇢W > ⇢V if the inequality is reversed.

The intuition for (ii) is that a planner would not select ⇢W > ⇢S because such a policy would

result in greater distortions on q and, by the definition of ⇢S , in lower security as well. The case

⇢W = ⇢S could only hold in the counterfactual scenario in which q were unaffected by ⇢.

We note that the inequality in (iii) expresses the relation between the marginal impacts of a

change in ⇢ near ⇢V on the trade surplus (left-hand side) and mining costs (right-hand side). The

net effect on the trade surplus depends on the positive effects on security, measured by the elasticity
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term ✏S,⇢, and the negative effect on q due to inflation; captured by iB in an equilibrium. Regarding

costs, a marginal increase in ⇢ has only a quantity effect on miners’ reward, since db(⇢V )
d⇢

= 0. The

planner is concerned with the fraction m�1
m

of that reward spent in mining, not with miners’ profits.

Depending on the primitives, there could be socially excessive mining at ⇢V . We illustrate this

point with an example in Figure 6, using a generalized CRRA function u(q) = 1
1�� ((q + ⇠)1�� �

⇠
1��),⇠ ⇡ 0,� > 0. The middle and right panels are otherwise identical but feature a low and a

high � value.44 In the middle panel, at ⇢ = ⇢V , the marginal impact of a change in ⇢ on carrying

costs is lower than that on mining costs; again, due to the beneficial increase in S in regards to iB.

Accordingly, the planner would find it optimal to reduce the bitcoin issuance rate to economize on

mining costs. The opposite holds in the economy displayed on the right panel: the marginal impact

of a change in ⇢ at ⇢V is lower on mining costs. Relative to ⇢V , the planner seeks to marginally

increase ⇢ to provide miners with better incentives and increase the trade surplus’ expected value.

5 Implications for Bitcoin Price Volatility

What does Bitcoin’s security model imply for price volatility? We identify two mechanisms with the

potential to amplify price fluctuations, each associated with a distinct source of uncertainty. The

first mechanism is the amplification of a fundamental shock in bitcoins’ demand, and the second is

volatility induced by sentiment shifts that are unrelated to fundamentals.

5.1 Bitcoin’s Security and Price Amplification of Fundamental Shocks

Consider a fundamental change in money demand due to a change in the number of bitcoin buyers.

We contrast the steady-state equilibrium response for tokens with intrinsic and extrinsic security.

To establish a meaningful contrast, we concentrate on the high DME, since the low DME is unique

to bitcoins. Bitcoin security is S (bH , A) and an otherwise identical token has security S. From (8),

if S = S (bH , A), the stationary value of real balances must coincide: bH = b.
44We note that one can illustrate the same point using other model parameters. The utility curvature parameter

� intuitively connects to the value of the trade surplus. Equilibria with relatively high � values display relatively
high trade surpluses; also high security levels, since buyers are willing to pay a high price for the token that miners
receive as rewards, increasing the system’s security budget.
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Figure 7. Price change amplification of an adverse change in the number of buyers
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How is the value of each token affected by a change in n? In the extrinsic case, we know

from Lemma 2 that an increase in n raises the marginal value of liquidity in the DM; thus, the

new steady-state price must be higher, and vice versa. The following proposition shows that, for

bitcoins, an identical change in n causes greater equilibrium price movements.

Proposition 6. Consider a high DME for Bitcoin with security S (bH , A) and an otherwise identical

token with extrinsic security S = S (bH , A). A change in the number of buyers induces a more

significant equilibrium price change for bitcoins:
���dbH
dn

��� >
��� db
dn

���.

Figure 7 illustrates the equilibrium price change. A decrease from a high to a low value of n

causes the demand for real balances to weaken. The direct impact of this change in demand on b,

with security held constant, is given by
���b0 � b

���. For Bitcoin, however, miners’ incentives are also

affected, generating a negative system hashrate response and, thus, a decrease in security that feeds

back the downward pressure on the price. The price impact of the endogenous security response

can be graphically seen as
���b0H � b

0
���. Conversely, a positive increase in demand would generate a

positive mining response, and a greater equilibrium price increase for bitcoins. Therefore, failing to

consider the structural connection between price and security could lead to systematic mispricing

and underestimating the price volatility for bitcoins and similar PoW blockchains.

We comment further on the interpretation of this result. First, if one naively ignored the equi-
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librium price–security connection, one should not expect pricing errors to be symmetric. Provided

that mining investment has a decreasing marginal impact on security, mispricing is likely to be more

pronounced for negative shocks.45 Second, we should not expect this type of amplification to be a

transient effect, but a structural feature. Since the system’s security is tied to an internal budget,

the probability distribution over security outcomes depends on the bitcoin price. Third, because

meaningful price changes are more likely to trigger security reassessments, this mechanism connects

more naturally to long-term price movements46 (quarterly, yearly) rather than high-frequency ones.

5.2 Non-fundamental Uncertainty, Price Booms, and Crashes

We observe more frequent booms and busts in the bitcoin’s price than for most currencies. What

makes them particularly puzzling is that they often occur without any apparent link to fundamentals

(e.g., Bhambhwani et al., 2019). In this section, we analyze the potential role of non-fundamental

uncertainty (Azariadis, 1981; Cass and Shell, 1983) by constructing equilibria in which the price

of bitcoin can jump based on agents’ sentiments, which are driven by sunspots. We show how the

scope for such unpredictable jumps is broader for bitcoins than for traditional currency.

Following Lagos and Wright (2003), we focus on stationary equilibria in which bitcoin balances

change stochastically as a function of the realization of a sunspot variable, but not of time. We

consider a two-state Markov chain with states ! 2 {1, 2} and �! := P (!t+1 = !|!t = !). The

realization of the sunspot is publicly observed at the beginning of each DM, which affects the terms

of trade. When agents observe !, the value of real balances is b! and the quantity exchanged

is q! = �

⇢

b!

n
. Without loss of generality, let ! = 2 be the optimistic state, b2 > b1. In the

CM, in turn, miners and buyers make decisions anticipating that sentiment could change later in

the same period. Miner investment is as in (1), but based on a valuation for balances given by

45We provide a quantitative perspective that illustrates this point in Section C.4 of the IA. By decomposing the
effect of fundamental shocks, we also show that the relative importance of the security amplification mechanism
increases in the strength of the attackers’ commitment as measured by A.

46The bitcoin/USD exchange rate can experience massive displacements yearly that begets security reassessments.
To illustrate, during the recent boom and bust cycle, the bitcoin price increased by 1,413% in 2017 (from USD 951
to USD 14,388), then decreased by 74% in 2018 (to USD 3,743), and rose again by nearly 100% in 2019 (to USD
7,432). Although Bitcoin did not experience successful attacks during the 2018 price downturn, several smaller PoW
chains did (see Section A.5 of the IA).
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Figure 8. Sunspot equilibria

The left (right) panel corresponds to the utility parameter � = 0.5 (� = 7). All other parameters
are as in the baseline calibration in Section C of the IA.
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E!b = �!b! + (1� �!) b!0 , ! 6= !
0. For buyers, given a security assessment S! := S (E!b, A), the

natural extension of the program in (4) results in a two-equation system determining b1 and b2:

b! =
�

⇢

�
�!S!b!

�
f
�
u
0 (q!)� 1

�
+ 1

�
+ (1� �!)S!b!0

�
f
�
u
0 (q!0)� 1

�
+ 1

��
,! 6= !

0
. (12)

For a given b1 and b2, we are interested in whether probabilities �! 2 (0, 1) that satisfy (12) can

be found to support sunspot equilibria. This is possible under two types of conditions:

• Type I: D(b2) > b2 > b1 > D(b1),

• Type II: D(b1) > b2 > b1 > D(b2).

Type I requires function D to cross the 45-degree line from below between b1 and b2, as in the

left panel of Figure 8. One finds therein a continuum of such equilibria for b1 2 (bm, bL) and

b2 2 (bL, bH), as shown by the red and green segments. Type II requires D to cross the line from

above, as in the right panel. In this case, b1 and b2 belong to the area of overlap between D(b) and

D
�1(b) in the proximity of bH .
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The existence of Type II equilibria relies on the specifics of the preferences and parameters. For

example, regarding the figure’s parametrization, a large value of the utility parameter � is needed.

Therefore, regardless of the security model, Type II equilibria may or may not exist. It is important

to stress is that Type I equilibria can only exist when the security function and the token price

interrelate—yielding multiple DMEs—as we state in the following proposition.

Proposition 7. Only Bitcoin can satisfy the existence conditions for Type I and II equilibria.

Since both types are viable for Bitcoin, we can say that, relative to other currencies, bitcoins

are more prone to exhibit seemingly irrational and unpredictable price jumps.47 Indeed, for some

primitives, conventional currencies on a stationary equilibrium path would never feature price booms

and crashes, while bitcoins can, as in the left panel of Figure Figure 8.

6 Bitcoin in a Bimonetary Economy

In this section, we consider an extension with two payment systems, Bitcoin and a fiat currency.

Although we do not attempt to model every conceivable difference between these systems, we

emphasize that they are not perfect substitutes. Our differentiating focus is on security risks and

their liquidity function regarding one’s ability to conduct certain transactions. Allowing for such

heterogeneity helps in clarifying the conditions under which bitcoins are valued. It also illustrates

the model’s application to more complex settings.

The determination of Bitcoin’s security is as in Section 3. Fiat currency can be purchased in

the CM at a price � and is not subject to sabotage attacks. The growth rate of fiat supply, M , is

constant and denoted � = Mt+1/Mt. We focus on steady-state equilibria in which real quantities,

including real monetary balances bt = ptBt and µt = �tMt, are constant over time; accordingly,

agents expect �t+1

�t
= �

�1 and pt+1

pt
= ⇢

�1.

On the transaction side, we consider the possibility that not all sellers accept each form of

47Although we focus on price volatility in this section, the emergence of sunspot equilibria also affects the system’s
ability to resist attacks. When sunspot equilibria exist, each generates a transition matrix over states {0, b1, b2}. If the
quantitative gap between b1 and b2 is large, the system’s lifetime could be meaningfully affected by nonfundamental
sentiment shifts. Section C.5 of the IA provides examples.
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money in the DM.48 More specifically, buyers anticipate three types of meetings ⌧ 2 {B,M,MB},

reflecting whether sellers accept bitcoins only, fiat currency only, or both. We denote as f⌧ the

probability that the buyer meets a seller of type ⌧ and f =
P

⌧
f⌧ . The competitive prices for the

goods traded in the DM are zB if bitcoins are used and zM if the fiat currency is used.

The sellers’ break-even condition resembles that in previous sections; for sellers to be indifferent

between any two production levels, one needs zB and zM to compensate for their balances’ carrying

cost. Thus, zB = ⇢

�
and zM = �

�
. An MB-type seller is willing to exchange a given production level

qMB with buyer i for any combination of bi and µi as long as qMB =
⇣

bi

zB
+ µi

zM

⌘
.

The buyers’ program is a generalization of (4) that yields an optimal choice of bitcoin and fiat

holdings. Besides the corresponding budget constraints, buyers face a liquid wealth constraint in

the DM that now depends on the type of seller in a given meeting. When both monies are valued

in a given equilibrium, buyers’ choices must satisfy the conditions listed in the following lemma.

Lemma 3. In any stationary equilibrium in which bitcoins and the fiat currency have positive prices,

iB(bss) = fB�B (bss) + fMB�MB (µss, bss) , (13)

iM = (fM + (1� S (H(bss), A)) fMB)�M (µss) + S (H(bss), A) fMB�MB (µss, bss) , (14)

where iM := �

�
� 1, iB(b) := ⇢

S(H(b),A)� � 1, �⌧ (µ, b) := (u0 (q⌧ (µ, b))� 1)+, and S(H(b), A) and

H(b) are as in (2) and (8), respectively.

The system (13)–(14) is a generalization of (8); similarly, iB and iM express buyers’ marginal

carrying costs of bitcoin and fiat currency balances. Given that both bitcoins and fiat currency are

intrinsically useless, this system indicates that the equilibrium value of real balances in each case

must equalize their marginal carrying costs to the marginal value of their liquidity service.49

48Lester et al. (2012) consider a related environment but with asymmetric information and risk of counterfeiting.
Their focus is on sellers’ decision to invest in learning about the quality of each money. We abstract from such
decisions and focus instead on the connections between acceptability and security. Due to the transparency of the
public Bitcoin ledger, one can argue that counterfeiting is not a primary concern for bitcoins.

49Similarly to the analysis in Lemma 2, we note that the liquidity premium �⌧ corresponding to a type-⌧ meeting
is positive as long as q⌧ < q

⇤; liquid wealth is valuable at the margin in a such case. If b and µ are positive in
equilibrium, we must have qB < qMB and qM < qMB ; otherwise, buyers would want to readjust their holdings.
Finally, �MB > 0 holds if qMB < q

⇤; otherwise, �MB = 0 in (13) and (14). Note also that �M (µ) = �MB (µ, 0).
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Figure 9. Stationary DMEs in a bimonetary economy

This figure represents the set of equilibria in an economy where no buyers accept only bitcoins
(fB = 0) and the bitcoin supply growth is relatively low (⇢ < �).
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In the remainder of this section, we focus on particular cases of interest. First, we consider

the case in which no seller accepts both fiat currency and bitcoins, fMB = 0. For example, if

regular Internet sellers like Amazon accept only fiat card payments and dark web sellers like Silk

Road accept only bitcoins. From Lemma 3, it is immediately clear that we can derive the value

of bitcoins using (2), (6), and (13) alone. Therefore, the value of bitcoins is equivalent to that

obtained in (8). A first conclusion is then that, from a pricing perspective, Proposition 2 best

represents bitcoin’s value when either form of money is essential for a given transaction.

Now consider the case in which all sellers accept fiat currency, but some also accept bitcoins

(fB = 0). Combining (13) and (14), we obtain iM � SiB(b) = (fM + (1� S) fMB)�M (µ); for

this equation to hold, we need iM > SiB(b). Therefore, we can establish a lower bound for the

fiat currency inflation rate �, which becomes a necessary condition for bitcoins to be valued. A

second conclusion is then that, if bitcoins are inessential for commerce, we only expect consumers

to demand bitcoins in economies where the fiat inflation tax is high. There could be no bitcoin

demand if the central bank followed a deflationary or constant-supply policy.
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Figure 9 illustrates the equilibrium determination of b and µ in an economy with fMB, fM > 0,

fB = 0, and � > ⇢. The functions µ = gB(b) and µ = gM (b) are implicitly defined by (13) and (14),

respectively. Importantly, as in previous sections, the complementarities between bitcoin users and

miners yield a multiplicity of price–security ranked equilibria.50 A third conclusion is then that

Bitcoin’s security model can generate multiplicity regardless of whether bitcoins are essential in

transactions. This fact highlights that the main conclusion of Propositions 1 and 2 is not a result

of assuming that only bitcoins are available as a means of payment.

We group the conclusions derived above in the following proposition.

Proposition 8. Consider the set of bimonetary stationary equilibria. (i) If bitcoins are valued, their

price and security are not uniquely determined. (ii) If fMB = 0 and fB > 0, bitcoin real balances

and security are as in Proposition 2. (iii) If bitcoins are inessential for commerce (fB = 0), but

bss > 0, then the fiat currency monetary policy must satisfy � > ⇢+ � (1� S (bss, A)).

7 Discussion

We present a succinct discussion of our results and establish connections with empirical findings.

Price Formation and Hashrate. An essential empirical implication of our model is that

bitcoin prices and the system’s hashrate are positively related in the general equilibrium. The long-

term evolution of these key quantities, as displayed in Figure 1, provides strong support. To further

assess this implication, we document in Section A.4 of the IA the joint evolution of prices and the

hashrate for Ethereum, the second largest PoW blockchain by market capitalization, and Litecoin,

one of Bitcoin’s clones with the longest history. For these, we also find a robust positive relation.

Further empirical support is provided by Bhambhwani et al. (2019), who find that the aggregate

hashrate has a long-term (cointegration) relation with the bitcoin price, and the same holds for a

set of cryptocurrencies that rely on Bitcoin’s security model.51

50A related case—arguably a less empirically realistic one—is that in which all sellers accept both fiat currency and
bitcoins; thus, these are perfect substitutes as means of payment. Bitcoins and fiat currency are not, however, perfect
substitutes regarding security. In this case, f = fMB , and (13) and (14) reduce to iM � SiB(b) = (1� S) f�M (µ),
which yields a similar lower bound for � and the possibility of multiple equilibria.

51While less tightly connected, there is a growing body of related evidence on risk-return relations for bitcoin and
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Security Budget and Network Attacks. As of yet, no successful hashrate attack against

Bitcoin have been recorded.52 Our results highlight that such robustness must be seen as an

equilibrium economic outcome—one with a high-security budget—and not as a byproduct of its

blockchain technology. This vital distinction is best illustrated by the successful attack history of

blockchains that, despite sharing Bitcoin’s features and security model, have failed to achieve one

such reliable budget. We document several related episodes in Table A2 in the IA.

Monetary Policy in PoW Blockchains. Although maximizing the token’s value, the sys-

tem’s security, and social welfare can all be plausible design goals, we have shown that no monetary

policy achieves these objectives at once. We note that the once-and-for-all implementation of Bit-

coin’s monetary policy does not seem the solution to any formal design goal.53 In particular, given

that there is no mechanism that renders ⇢ close to ⇢W , miner security investment can be expected

to be socially inefficient.54 While a monetary policy reformulation in Bitcoin is unlikely, our results

can help to clarify its private and social costs and offer guidance in the design of new systems.

Non-fundamental Volatility. We find that bitcoins’ prices can fluctuate stochastically as

non-fundamental sentiment changes, and the scope for such unpredictable jumps is greater than

for traditional currencies. This result corresponds well to several empirical findings. For example,

Bhambhwani et al. (2019) find that bitcoin prices deviate from fundamentals in response to a

sentiment factor based on momentum.55 Our result also suggests that the unprecedented volatility

that Bitcoin has exhibited thus far cannot be entirely attributable to behavioral biases and/or

limited use in commerce, although these factors can also play a role. Indeed, we feature neither

other cryptocurrencies (e.g., Bianchi and Dickerson, 2018; Borri and Shakhnov, 2018; Ghysels and Nguyen, 2018).
52There are a few well-known episodes where Bitcoin’s perceived network security was compromised, with im-

mediate adverse valuation effects. These include the March 11, 2013, six-hour fork that created lack of con-
sensus in the network and an instant 24% drop in price, though without malicious intent (for a discussion, see
https://bitcoinmagazine.com/articles/bitcoin-network-shaken-by-blockchain-fork-1363144448).

53A precise monetary policy is not outlined by Nakamoto (2008), but its design was outlined in the software
implementation (see Section A.4 of the IA). Other blockchains follow more flexible models. For example, monetary
policy in Ethereum is subject to revisions that are discussed within that community of developers.

54Benetton et al. (2019) empirically estimate mining social costs using a sample of Chinese and U.S. mining firms.
55In addition, Liu and Tsyvinski (2018) find that both momentum and public attention, proxied by Internet search

trends and Twitter activity, help to explain the time series of bitcoin returns. Makarov and Schoar (2020) show that
capital controls and other limits to arbitrage contribute to the deviation of bitcoin prices from fundamentals. The
sentiment equilibria that we characterize also embeds a time-series correlation between bitcoin holding returns and
trade volume. This property seems consistent with the study by Borri and Shakhnov (2018), who attribute the
volume–return pattern of bitcoin–dollar trades attributable to speculation rather than to fundamentals.
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irrational agents nor upper bounds for the acceptability of bitcoins.

Bitcoin Usage. Our model features the use of bitcoin as a means of exchange for some trans-

actions. Some of the earliest related evidence is provided by Athey et al. (2016). Biais et al. (2019)

develop an empirical test relating the market value of bitcoins with transactional benefits, which are

proxied by retailer acceptance. Besides legal status uncertainty and taxation, a frequent argument

is that large price volatility prevents more widespread use (Yermack (2015)). Our results on the

structural amplification of volatility suggest that such a challenge is likely to be enduring.

The bimonetary analysis highlights Bitcoin’s potential in two specific circumstances. The first

one is when private agents suffer from incomplete connectivity due to governmental restrictions

on using currency or the banking system. In that regard, Bitcoin can function as a stateless

system offering a high degree of censorship resistance. Formally, we can associate the latter with

fB > 0; if B-type sellers are the government’s economic or political targets of a service-denial attack.

The greater the number of restrictions, the greater the scope for Bitcoin to complete the network

of economic relations domestically, or abroad, under international sanctions. Therefore, it seems

reasonable to expect a relatively high fB and bitcoin price values with repressive authorities.56

The second circumstance is when bitcoins can offer protection against fiat currency inflation,

regardless of whether bitcoins are essential for specific trades.57 This model implication corresponds

well to industry reports that rank unstable high-inflation countries, such as Venezuela, among those

with the highest Bitcoin usage per capita,58 and to the evidence by Yu and Zhang (2020).

56The demand for censorship resistance has multiple sources associated with governments’ actions, including
financial repression through capital controls; international sanctions; option-like hedging against abuses such as
wealth confiscation or the targeting of political dissidents and/or religious groups; hedging against changes in in-
heritance laws; forced maturity conversion of bank deposits; the ability to secure wealth transfers in the event
of armed conflicts, territorial invasions, civil wars, and refugee crises; and the criminalization of certain con-
sumer goods (e.g., alcohol, cannabis, or yet unapproved medicines) and/or services (e.g., gaming, gambling, pre-
diction markets). There is increasing evidence on how bitcoins and similar tokens are used in these regards.
For example, reflecting the demand to circumvent capital controls, the firm Chainalysis reported that more than
$50 billions worth of cryptocurrency moved from China-based to overseas addresses in the twelve months before
August 2020 (https://www.bloomberg.com/news/articles/2020-08-20/crypto-assets-of-50-billion-moved-from-china-
in-the-past-year). Foley, Karlsen, and Putnins (2018) provide evidence on the use of bitcoins in criminalized trades.

57We note that these two circumstances are not mutually exclusive. Indeed, high-inflation countries usually enforce
tight capital controls, such as disallowing people’s access to foreign currencies for international remittances, making
bitcoins more appealing.

58For example, Venezuela is ranked third on the Chainalysis 2020 Geographic Crypto Usage Index. LocalBitcoins,
a peer-to-peer exchange, ranks Venezuela the second most active country, scaled by the number of Internet users and
purchasing power (see https://blog.chainalysis.com/reports/venezuela-cryptocurrency-market-2020).
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8 Concluding Remarks

We presented a tractable decentralized monetary economy where users’ and miners’ decisions impact

each other and the evolutions of bitcoin prices and security are jointly determined. The model

outcomes demonstrate how ignoring these general equilibrium connections—as in the benchmark

considered—can lead one to mischaracterize the equilibrium set, underprice/overprice the token

depending on assumptions about security, underestimate price volatility, and wrongly conclude that

Bitcoin’s declining supply growth mechanically increases its value. We believe that our results can

help understand other markets for network assets that rely on PoW consensus.

We conclude by discussing limitations and opportunities for future work. We focused on equi-

libria that do not display congestion. Intuitively, in our setting, it is sufficient for the block size to

exceed the data storage needs with n transfers. If the block size were smaller, not all buyers would

be able to acquire bitcoins. An equilibrium would then require buyers to be indifferent about buying

bitcoins. This could be achieved with mixed strategies if those who buy bitcoins pay transaction

fees of a value matching their trade surplus, thus redistributing resources from users to miners.

This observation is decisively not to suggest that abstraction from fees is without loss of generality.

If agents’ impatience were heterogeneous, for example, user-initiated fees could play an allocative

role, as demonstrated by Easley et al. (2019) and Huberman et al. (2019). The integrating a rich

fee bidding game within a general equilibrium monetary framework is an exciting avenue of work.

Because our analysis focuses on seigniorage-financed security, it also highlights challenges re-

garding Bitcoin’s monetary policy, which eliminates issuances in the long term. If bitcoin usage

continues to grow over the coming decades, one can, like Nakamoto, hope that user fees compensate

for some or all of the loss of miner revenue. However, there is no built-in mechanism that makes

such a shift in revenue source to be granted. Second layer networks such as Lightning can help with

the scaling limitations but its net impact of on-chain fees is still uncertain. Whether security can

remain at high levels beyond 2140 is, therefore, an important open question.
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Appendix: Proofs of Propositions

This Appendix contains the proofs of proposition in the main body of the paper. Proofs of lemmas
are found in Section E of the IA. Subsequently, we sometimes avoid displaying the dependency of
S and its derivatives on (H(b), A) and H(b) on b for compactness of notation.

Proof of Proposition 1

The necessary and sufficient condition for the existence of equilibrium under extrinsic security follows
immediately from (3). Since V

0 is strictly decreasing, there can be at most one equilibrium.
Consider the case of intrinsic security and let ⇡ = {p > 0 : � (p) = 1} be the set of positive values

satisfying (3), where �(p) represents the left-hand side of (3). Let pm be defined by pm = H
�1 (A)

according to (1). Clearly, p̃ 2 [0, pm] cannot be in ⇡ since H(p̃) 2 [0, A]; given (2), S (H(p̃), A) = 0.
For p > pm(A), instead, we must have S (H(p), A) > 0. Since V

0 is decreasing and V
0 (0) = +1,

by continuity, there must be a sufficiently large n̂(A) such that �(p; n̂(A)) � 1. Therefore, when
the population of buyers is large enough, ⇡ must contain at least one element.

Next, we argue that if the set ⇡ is not empty, the number of equilibria is even. Computing �0(p)

and using market clearing, we obtain

�0 (p) = SHHp

✓
fV

0
✓
B

n
p

◆
+ (1� f) �R

◆
+ S (H (p) , A)

B

n
fV

00
✓
B

n
p

◆
.

For the smallest element in ⇡, pL, �(p) must cross 1 from below, so �0(pL) > 1. Next, note that from
(2), SH =

�
A

H

�k k

H
; from (1), Hp = m�1

m

⇣
� R



⌘
. Combining these expressions, SHHp =

�
A

H

�k k

p
.

Thus, for sufficiently large p values, S(H(p), A) ⇡ 1, SHHp ⇡ 0, and �0 (p) ! B

n
fV

00
⇣
B

n
p

⌘
< 0.

We conclude that, if there exists a stationary value pL > 0 with �0 (pL) > 1, there must be another
solution pH > pL with �0 (pH) < 0 so that � crosses 1 from above. Since this conclusion holds
regardless of V ’s specific functional form, the number of elements in ⇡ must be even. An exception
is the special case of a tangency value p̂ such that �(p̂) = 1 and �0(p̂) = 0. ⇤

Proof of Proposition 2

The existence and multiplicity part of the proof follows similar steps to those in Proposition 1.
Still, we must account for the optimality conditions in the DM exchange and supply growth. Let
� = {bss : bss = D(bss), bss > 0} be the set of positive values satisfying (8). Let bm be defined by
bm = H

�1 (A) according to (6). For b  bm(A), we must have S (H(b), A) = 0; for b > bm(A),
S (H(b), A) > 0. Since u

0 is a decreasing function, and u
0 (0) = +1, by continuity, for values

b > bm(A) there must be a sufficiently large n̂(A) such that D(b; n̂(A)) � b. Therefore, when the
population of buyers is large enough, � must contain at least one element.
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If the set � is not empty, the number of DMEs is even. To see this, from the right-hand side of
(7) we obtain

D
0 (b) =

�

⇢
{SHHbb+ S (b, A)}

⇢
fu

0
✓
�

⇢

b

n

◆
+ (1� f)

�
+

✓
�

⇢

◆2
f

n
S (b, A) bu00

✓
�

⇢

b

n

◆
.

For the smallest element in �, bL, D(b) must cross b from below on the (bt+1, bt) plane, so D
0(bL) >

1. Next, consider b > b
⇤. From Lemma 2, D(b) = �

⇢
S (b, A) b; combining with (6), D

0 (b) =
�

⇢
{SHH + S (b, A)}. From (2), SHH = k

�
A

H

�k. Therefore,

lim
b!+1

D
0 (b) = lim

b!+1

�

⇢

(
k

✓
A

H(b)

◆
k

+ S (b, A)

)
=
�

⇢
< 1. (15)

We conclude that if there exists a stationary solution bL > 0 with D
0 (bL) > 1, there must another

solution bH > bL with D
0 (bH) < 1 so that D crosses the 45-degree line from above. Because (15)

holds regardless of the functional form of u, the number of elements in � must be even. An exception
with no crossings is the particular case where D is tangent to the 45-degree line at a point bss such
that D

0(bss) = 1.
We now compare welfare outcomes across stationary DMEs. Expand the expectation in (9) and

combine with (6) to obtain

Wss/n = fS (H (qss) , A) (u (qss)� qss)�
m� 1

m
(⇢� 1) qss, (16)

where we used qss =
�bss

⇢n
to conveniently express welfare as a function of q. Now, consider the effect

of a marginal increase in q on WL:

fSHHq (qL) (u (qL)� qL)| {z }
I>0

+ fS
�
u
0 (qL)� 1

�
| {z }

II>0

� m� 1

m
(⇢� 1)

| {z }
III>0

. (17)

Expression I in (17) reflects a security enhancement; it must be positive given (2) and Lemma 1.
Expression II reflects the marginal change in the value of the trade surplus; it must be positive since
qL < q

⇤ by Lemma 2. Expression III reflects the positive marginal increase in mining costs. Social
welfare increases with q only if the constant term III is small relative to I and II between qL and qH .
To assess the latter, note that, from (8), it must hold that f (u0 (qL)� 1) = ⇢

�S(qL,A) � 1. Therefore,
II equals ⇢

�
� S (qL, A). Since S < 1 for q > 0, ⇢

�
> 1, and m�1

m
< 1, we must have II>III. Thus, an

increase in q over qL raises social welfare. Since qH > qL, we conclude that WH > WL. ⇤
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Proof of Proposition 3

Let y(b; ⇢) := �S

⇢
(f (u0 (q (b, ⇢))� 1) + 1); b satisfying y(b; ⇢) � 1 = 0 is equivalent to (8). By the

implicit function theorem, in the vicinity of b, db

d⇢
= �y⇢

yb
; Lemma E1 in the IA shows that yb < 0

for the high DME. We have db

d⇢
= 0 if and only if y⇢ = 0. Computing y⇢,

y⇢ =
�

⇢2
{(⇢SHH⇢ � S)(f

�
u
0 (q (b))� 1

�
+ 1)� Sfq (b)u00 (q (b))}. (18)

Using equation (6), H⇢ =
H

⇢(⇢�1) , and, from (2), SH = k
�
A

H

�k 1
H

. Therefore, ⇢SHH⇢ =
�
A

H

�k k

⇢�1 =

(1� S) k

⇢�1 . Combining the latter expression with (18), we obtain

y⇢ =
�

⇢2
S

0

BB@

✓
k (1� S)

S (⇢� 1)
� 1

◆

| {z }
I

(f
�
u
0 (q (b))� 1

�
+ 1)

| {z }
II>0

+
�
�fq (b)u00 (q (b))

�
| {z }

III>0

1

CCA . (19)

Expression II on the right-hand side of (19) is positive by Lemma 2. Expression III captures the
change in the terms of trade in the DM and is positive because u

00
< 0. Expression I can be positive

or negative. For low ⇢ values, ⇢ ⇡ 1, I is positive, implying that y⇢ > 0—marginal security gains
are large. When ⇢ is large enough, I becomes negative, implying that we can have y⇢ < 0. If y⇢ > 0

for low ⇢ values and yb < 0 for high ⇢ values, by continuity, there must be a value ⇢V satisfying
yb(⇢V ) = 0. Such a value is implicitly defined by the right-hand side of (19) being equal to zero,
which requires that:

✓
1� k (1� S)

S (⇢� 1)

◆
(f
�
u
0 (q (b))� 1

�
+ 1) = fu

0 (q (b))� (b) , (20)

where � (b) := �q(b)u
00(q(b))
u0(q(b)) . Combining expressions (20), II = ⇢

�S
= iB + 1 and fu

0(q) = iB + f

from (8), and ✏S,⇢(⇢V ) = k(1�S)
S(⇢V �1) we obtain (10). Note that if a value ⇢V solves (20), from Lemma

E1, the second-order conditions for such solution to maximize real balances are only met by the high
equilibrium. The fact that dpH

d⇢
> 0 for ⇢ < ⇢V and dpH

d⇢
< 0 for ⇢ > ⇢V follows from bH = pHB. ⇤

Proof of Proposition 5

Parts (i) and (ii) follow from the arguments in Section 4.3. For (iii), consider the planner’s objective
function in (16) subject to buyers’ optimality restriction from (8). Note that the planner’s ⇢ choice
affects b(⇢) and q (b, ⇢). We obtain the marginal social benefit (MSB) of a change in ⇢ by total
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differentiation of the expected DM trade surplus:

MSB = SH

✓
H⇢ +Hb

db

d⇢

◆

| {z }
security enhacement

f (u (q)� q) + Sf
�
u
0(q)� 1

�✓
q⇢ + qb

db

d⇢

◆

| {z }
effect on DM exchange q

=

S
q

⇢

✓
✏S,⇢f

✓
u(q)

q
� 1

◆
+ f

�
u
0(q)� 1

�
(✏b,⇢ � 1)

◆
, (21)

where the second line uses qb =
q

b
, q⇢ = � q

⇢
, and ✏z,⇢ := dz

d⇢

⇢

z
. Analogously, we obtain the marginal

social cost (MSC) of a change in ⇢ by total differentiation of the mining investment:

MSC =
q

⇢

m� 1

m
((⇢� 1) ✏b,⇢ + 1) . (22)

Next, we evaluate whether MSB R MSC at ⇢ = ⇢V . Using ✏b,⇢ (⇢V ) = 0 in (21) and (22), it follows
that MSB < MSC if:

S

✓
✏S,⇢f

✓
u (q)

q
� 1

◆
� f

�
u
0(q)� 1

�◆
<

m� 1

m
. (23)

Substituting iB = f (u0(q)� 1) from (8) in (23), we obtain the inequality in (iii). If (23) holds, social
welfare is enhanced by setting ⇢W below ⇢V . If the inequality in (23) is reversed, MSB > MSC;
thus, it is socially optimal to set ⇢W > ⇢V .

e

Proof of Proposition 6

We assume that S(bH , A) = S, implying bH = b. Differentiating equation (8) at bss = bH :
⇢
��
⇢

1

n
Sfu

00 (q (bH)) q (bH)

�
dn+

⇢
�

⇢
SHHb

�
f
�
u
0 (q (bH))� 1

�
+ 1

�
+
�

⇢
Sfu

00 (q (bH))
�

⇢

1

n

�
dbH = 0.

Multiplying both sides by bH , and rearranging
⇢
�

⇢
SHH

�
f
�
u
0 (q (bH))� 1

�
+ 1

�
+
�

⇢
Sfu

00 (q (bH)) q (bH)

�
dbH =

n
Sfu

00 (q (bH)) q (bH)2
o
dn.

(24)
Analogously, for the token with extrinsic security:

⇢
�

⇢
Sfu

00 �
q
�
b
��

q
�
b
��

db =
n
Sfu

00 �
q
�
b
��

q
�
b
�2o

dn. (25)
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Given bH = b, the right-hand sides of equations (24) and (25) coincide. Therefore, we must have
⇢
�

⇢
SHH

�
f
�
u
0 (q (bH))� 1

�
+ 1

�
+
�

⇢
Sfu

00 (q (bH)) q (bH)

�

| {z }
yb(bH)

dbH =

⇢
�

⇢
Sfu

00 �
q
�
b
��

q
�
b
��

| {z }
y
b
(b)

db. (26)

The first bracketed term of the left-hand size of (26) is positive at a DME, while the second is nega-
tive. From Lemma E1 in the IA, we know that the sum must be negative: yb(bH) =

⇣
D

0(bH)�1
bH

⌘
< 0.

Therefore, |yb (bH)| <
��yb(b)

��, implying that |dbH | >
��db

��.
e

Proof of Proposition 7

From the conditions in (12), we solve for (�1,�2):

�1 =

D(b2)
S(b2)

� b1
S1

D(b2)
S(b2)

� D(b1)
S(b1)

, �2 =

b2
S2

� D(b1)
S(b1)

D(b2)
S(b2,A) �

D(b1)
S(b1)

. (27)

Sunspot equilibria can exist under two types of conditions. For Type I, the denominator in (27)
is positive. The full set of conditions for Type I is as follows: �1 > 0 requires D(b2)

S(b2)
>

b1
S1

; �1 < 1

requires b1
S1

>
D(b1)
S(b1)

; �2 > 0 requires b2
S2

>
D(b1)
S(b1)

, and �2 < 1 requires D(b2)
S(b2)

>
b2
S2

. Therefore,

the joint satisfaction of these conditions requires b1 and b2 to satisfy D(b1)
S(b1)

<
b1
S1

<
D(b2)
S(b2)

and
D(b1)
S(b1)

<
b2
S2

<
D(b2)
S(b2)

. Since S1 > S (b1), for D(b1)
S(b1)

<
b1
S1

to hold, it is necessary that D(b1) < b1.

Similarly, since S2 < S (b2), for b2
S2

<
D(b2)
S(b2)

to hold, it is necessary that D(b2) > b2. Therefore, D
must cross the 45-degree line from below between b1 and b2, D(b1) < b1 < b2 < D(b2), which only
holds in the intrinsic security case.

For Type II, the denominator in (27) is negative. Existence require that b1 and b2 satisfy
D(b1)
S(b1)

>
b1
S1

>
D(b2)
S(b2)

and D(b1)
S(b1)

>
b2
S2

>
D(b2)
S(b2)

. In this case, D crosses the 45-degree line from above
between b1 and b2, and these values are in the area of overlap between D(b) and D

�1(b) around bH .
If S(b1) ⇡ S(b2) for this range of values, a sufficient condition is that D

0(b) < �1 around bH .
e

Proof of Proposition 8

The proof of the existence of multiple equilibria is similar to that for Propositions 1 and 2 and is
therefore omitted. Part (ii) follows directly from Lemma 3. Finally, note that, if fB = 0, a necessary
condition for the system (13) and (14) to hold is that iM > S(bss, A)iB. Using the definitions of iM
and iB one obtains the lower bound for � in (iii).

e

46

Electronic copy available at: https://ssrn.com/abstract=3264448



Internet appendix to:

"Decentralizing Money: Bitcoin Prices and Blockchain Security"

Emiliano S. Pagnotta⇤

Contents

A Empirical Supplement 1

A.1 Security Budget: Block Reward and Fees . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A.2 Security Models and a Token Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A.3 Bitcoin’s Monetary Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A.4 Price and Hashrate Time Series for other PoW Blockchains . . . . . . . . . . . . . . . 4

A.5 Examples of Hashrate-Based Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

B Supplement to Section 3: The Dynamic Stability of DMEs 6

C Quantitative Supplement 8

C.1 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

C.2 Equilibrium Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

C.3 Block Reward Halving and Price Changes . . . . . . . . . . . . . . . . . . . . . . . . . 9

C.4 Volatility Amplification of Fundamental Shocks . . . . . . . . . . . . . . . . . . . . . . 10

C.5 Non-fundamental Uncertainty, Expected Time to Attack, and the Saboteur’s Resources 10

D Implications for the Mining Industry and Minting Costs 13

D.1 Miner Entry and Profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

D.2 Perfect Mining Competition and Minting Costs . . . . . . . . . . . . . . . . . . . . . . 14

⇤Imperial College London. Email:esp.research@pm.me

1

Electronic copy available at: https://ssrn.com/abstract=3264448



E Proof of Lemmas 15

F Proofs of Internet Appendix Propositions 18

A Empirical Supplement

This section supplements the discussion in Section 1 and documents related empirical facts.

A.1 Security Budget: Block Reward and Fees

The compensation to a miner winning the PoW contest consists of an inflationary block reward and
fees. Panel A of Figure A1 shows the percentage of miners’ daily revenues from fees. With some
exceptions, most notably the late part of 2017, the dominant component of the security budget has
been the block reward. On a daily basis, the median and mean values of the proportion from fees are
0.79% and 2.43%, respectively.

Fees are determined in a user auction for block space (Easley et al., 2019; Huberman et al., 2019).
The fact that fees thus far represent a small fraction of miners revenue is consistent with low block
congestion. Panel B of Figure A1 displays the time series of the mined block sizes relative to the block
capacity limit. The latter is determined as follows. In May 2013, a Bitcoin protocol update set an
explicit block size limit of 1 MB. Before that, the block capacity was within the range 500–750 kb (see,
e.g., https://en.bitcoin.it/wiki/Block_size_limit_controversy). The figure shows that the block size
is below the block capacity for virtually Bitcoin’s entire history up to August 2017: the proportion of
days with average block sizes exceeding 999 kb is 0.5%. In August 2017, activations of the SegWit
protocol update (see https://en.bitcoin.it/wiki/Segregated_Witness) increased the block capacity up
to 4 MB. The effective block capacity positively depends on the voluntary adoption of SegWit wallets,
which has gradually increased over time. Lehar and Parlour (2019) document that block congestion
has remained low after the implementation of SegWit.

A.2 Security Models and a Token Taxonomy

Definition 1 provides a classification for tokens and digital assets based on their security model.
Blockchains that follow Bitcoin’s PoW have an intrinsic model, since the internal security budget
depends on the token’s price. Table A1 provides some examples, including Ether, Litecoin, and Mon-
ero.

Regarding the extrinsic security model, besides the examples of Ripple’s XRP and Libra discussed
in Section 1, consider the Depository Trust & Clearing Corporation (DTCC), a centralized depository
providing for the custody of securities. Through its subsidiaries, DTCC provides clearance, settlement,
and information services for a range of securities on behalf of buyers and sellers. DTCC charges a dollar
fee for its services; therefore, there is a clear separation between the value of the verifier’s revenue and
the value of the transferred asset, for example, a stock such as Amazon. Put differently, the security of
the DTCC network is not affected by Amazon’s price. Similarly, the security of ERC-20 tokens within

1
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Figure A1
Bitcoin fees and block congestion

(a) Percentage of miners’ daily revenue from fees: July 2010–January
2020

(b) Bitcoin block congestion: January 2009–August 2017
Sources: Coinmetrics.io and Blockchain.com.
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the Ethereum network (e.g., Binance, VeChain, OmiseGo) does not depend on their token price, since
compensations for their transfers is paid using Ether.

Table A1
Digital tokens in centralized and decentralized networks: Examples

Network Peer-to-peer Multiple Free entry Token/asset Intrinsic
verifiers of verifiers security

Stock exchanges, DTCC n n n Public equity n
Bitcoin y y y Bitcoin y
Cryptocurrencies y y y Litecoin, Monero, etc. y
Ethereum y y y Ether y
Ethereum y y y ERC-20 tokens n
Ripple n y n XRP n
Libra n y n Libra n

A.3 Bitcoin’s Monetary Policy

Bitcoin’s monetary policy is not fully described in Nakamoto (2008), but its details are outlined in the
Bitcoin protocol.1 The initial reward was set to 50 by Nakamoto, and it halves every 210,000 blocks,
for as long as it is greater than 10�8 (one satoshi). One can then write the evolution of the bitcoin
supply in block time, as follows:

BJ =

min{J,J}X

j=1

50

2K(j)
,K(j) =

�
j

210, 000

⌫
, (A.1)

where 50 represents the initial number of bitcoins per block, J represents the block height, K(j)

represents the number of reward halving events up to block j, and J = 33 ⇥ 210, 000. Beyond block
J (estimated to be mined around 2140), bitcoin issuance stops; the supply limit can therefore be
expressed as

Blimit =
32X

i=0

50

2i
⇥ 210, 000 ⇡ 2.1⇥ 107.

Equation (A.1) provides a good yet imperfect approximation of the evolution of supply in calendar
time, for the following reasons. First, each calendar block confirmation time is random. Periodic
mining difficulty adjustments moderate the dispersion of confirmation times around the 10-minute
target. However, these adjustments occur approximately every two weeks (2,016 blocks), implying
that deviations from the target can happen within that period, especially at times of large bitcoin
price movements. Figure A2 displays the evolution of supply in blocks and calendar time, assuming
10-minute confirmation times. Second, custodial risk—losing one’s private key—implies that the stock
bitcoins stored in irretrievable wallets is weakly increasing over time. Such an unobservable stock
reduces the effective supply from the amount shown in (A1).

1For details and projections, see, for example, https://bitcoin.org/en/developer-guide,
https://en.bitcoin.it/wiki/Controlled_supply
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Figure A2
Bitcoin inflation eras and total supply

Source: bashco.github.io.

A.4 Price and Hashrate Time Series for other PoW Blockchains

Figure A3
Ether: USD price and hashrate: August 2015–January 2020

Sources: Coinmetrics.io.
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Figure A4
Litecoin: USD price and hashrate: August 2015–January 2020

Sources: Coinmetrics.io.

A.5 Examples of Hashrate-Based Attacks

Table A2 provides examples of recent hashrate-based attacks to PoW cryptocurrencies. For each
episode, the table shows the monthly returns measured in USD and BTC. For example, Bitcoin Gold,
a fork of Bitcoin, experienced a sequence of double-spend attacks in May 2018. Its price measured in
bitcoins at the end of that month was 27% lower (40% if measured in USD). In January 2019, following
a 50% decline in its price and hashrate relative to four months prior, Ethereum Classic also experienced
a double-spend attack and several deep block reorganizations.2 This attack was significant, given the
relatively high market capitalization ranking of this token at the time.

2A timeline is provided by the exchange Coinbase (https://blog.coinbase.com/ethereum-classic-etc-is-currently-being-
51-attacked-33be13ce32de).

5

Electronic copy available at: https://ssrn.com/abstract=3264448



Table A2
Examples of majority hashrate attacks to PoW blockchains

Month of Beginning-of- End-of- Return Beginning-of End-of- Return
the attack month price month price month price month price

Token Name Symbol price (satoshis) (satoshis) (BTC) (USD) price (USD) (USD)
Bitcoin Gold BTG May 2018 787,000 576,600 -26.73% 71.46 42.90 -39.97%
Verge XVG May 2018 877 512 -41.62% 0.0794 0.0385 -51.51%
MonaCoin MONA May 2018 55,540 43,970 -20.83% 5.05 3.30 -34.65%
ZenCash ZEN June 2018 407,000 278,000 -31.70% 30.45 17.73 -41.77%
Ether. Classic ETC Jan 2019 136,884 113,699 -16.94% 5.23 4.02 -23.14%

Source: Prices are from CoinMarketCap. Attacks periods are from CoinDesk and several media sources. Beginning-of-
month (end-of-month) prices correspond to the first day of the attack (following) month. One BTC equals 100 million
satoshis.

B Supplement to Section 3: The Dynamic Stability of DMEs

We have shown conditions for the existence of stationary DMEs. There can be other equilibria for
which b changes over time. Generally, to say more about the dynamic characteristics of a given equi-
librium, one must be specific about the utility function and parameter values. Consider the following
representation of preferences:

u(q) =
1

1� �

⇣
(q + ⇠)1�� � ⇠

1��
⌘
, ⇠ 2 [0, 1),� > 0, (B.1)

which generally yields two DMEs.3 Intuition from standard dynamic analyses (Blanchard and Fisher
(1989); Walsh (2017)) suggests that the dynamic behavior of a given DME depends on the utility
curvature parameter �. This intuition is correct for the high DME. In contrast, given Bitcoin’s security
model, we can establish stability properties for the low DME that hold for any continuous utility
function.

Proposition B1. Assume that the set of DMEs is non-empty. (i) The lowest DME, bL, is locally
stable: there is a value b̂ > bL such that, for all b0 2

⇣
0, b̂
⌘
, there is an equilibrium starting at b0 such

that bt ! bL. (ii) Assume that the utility function is as in (B.1) and that bH satisfies S (H (bH) , A) ⇡ 1.
Then, there is a threshold value �̂ (�, ⇢, f, ⇠) such that bH is locally stable if � > �̂, and is locally unstable
otherwise.

The driving factor behind the statements in Proposition B1 is the slope of D(b) near a steady-state
value bss. Indeed, the analysis of the dynamic equation bt = D (bt+1) suggests that bss is locally stable
when |D0(bss)| > 1. For the lowest DME, D must cross the 45-degree line from below in the space
(bt+1, bt) space; therefore, D0(bL) > 1. Again, this property does not depend on the specific utility
function: unless it is satisfied, a DME does not exist. Such local stability implies that there is a
continuum of equilibria originating near the steady state and converging into it.

3An exception is if D(b) is tangent to the 45-degree line at a point b̃ > 0, in which case b̃ is unique. If more than two
DMEs exist, the results below apply if bL and bH are interpreted as the ones with the lowest and the highest values.
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In contrast, for the highest DME, we must have D
0(bH) < 1, since D must cross the 45-degree line

from above. When the curvature parameter is high enough, however, we have D
0(bH) < 0. In that

case, paths originating near bH will be spiral-like, where the token’s price increases and decreases over
time.

Figure B5
Local dynamic stability of DMEs

(a) Divergent paths near bH (b) Spiral-like paths near bH

(c) Two-period cycle near bH

Figure B5 shows examples using the utility function in (B.1) with ⇠ > 0 and different values of �.
Panel A displays an economy with �1 such that D

0 (bH) > 0, for which the high DME is dynamically
unstable; paths that start at b ⇡ bH are divergent. Panel B shows an economy with �2 > �1 such that
D

0 (bH) 2 (�1, 0). Paths starting at b ⇡ bH can display divergent spiral trajectories. Panel C displays
an economy with � > �̂ such that D

0 (bH) < �1 for b ⇡ bH , implying that D(b) intersects D
�1(b) at

two points, b1 and b2. Therefore, this economy displays a two-period cycle.
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Consistent with Proposition B1, the low DME is dynamically stable, regardless of the value of the
utility function parameters.

C Quantitative Supplement

This section develops a quantitative version of the model. Section C.1 explains the calibration of the
model parameters. Section C.2 supplements Section 3 by presenting positive and welfare outcomes
for each DME. Section C.3 supplements Section 4 by constructing artificial events that resemble the
period around the halving of the block reward. Sections C.4 and C.5 supplement the volatility analyses
in Section 5.

C.1 Parameter Values

We take the period as representing one month and consider data points from the Bitcoin network as
of June 30, 2019, obtained from Blockchain.com and CoinMetrics. At that time, the bitcoin price was
USD 10,817, which we interpret as the high equilibrium price, pH . Other parameter values, summarized
in Table C3, are set as follows.

Parameter Calibration. On the supply side, we have B0 = 17.79 million bitcoins, and the system
hashrate, H0, is 58.67 exahashes per second, or approximately 154.15 yottahashes per month. With
an average of six blocks mined per hour, there are 4, 380 blocks per month. Given a block reward of
12.5 bitcoins, the monthly supply growth is ⇢0 = 12.5⇥4,380

17,790,000 ⇡ 0.308%, or 3.76% annually. Interpreting
a miner in the model as a mining pool, we set m0 = 10.4 Given (pH , ⇢0,m0), the cost parameter 0 is
obtained by inverting equation (6) and matching the observed hashrate.

On the demand side, �0 = 0.9957 (0.95 annually), consistent with standard values. We set Bf to
match the approximate blockchain volume during June 2019, 5.06 million, obtaining f0 = 0.284.5 The
exact number of bitcoin users is not directly observable, since one user can own multiple anonymous
wallets. By assuming that each user has an average of two wallets, we set n0 = 20.47 million, approx-
imately half the number of reported wallets.6 We represent preferences with (B.1) setting ⇠ = 0.01

and � = 1/2, values that are within the range of the money demand estimates of Lagos and Wright
(2005).7

Security Function. Given the lack of successful attack history, empirically estimating the security
function parameters A and k in (2) is not feasible. We therefore consider a range of values that
are consistent with the price above being an equilibrium, as follows. For each integer value ki 2

4Blockchain.com reports that the top 10 mining pools (e.g., BTC.com, AntPool, ViaBTC) regularly account for more
than 90% of the system’s hashrate.

5Note that the model’s expected number of transactions is nf , and the volume per transaction equals buyers’ holdings,
B

n
, yielding an average bitcoin volume of Bf per period.

6We note that this is a rather conservative number, given the global estimates reported by Rauchs et al. (2018).
7Using similar preferences and historical U.S. dollar balances, these authors estimate � values ranging from 0.16 to

0.48.
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Table C3
Parameter values

Supply side Demand side
B ⇢ (%) m  � � ⇠ f n

17.79m 0.308 10 171.58 0.9957 0.5 0.01 0.2844 20.47m

Table C4
Equilibrium outcomes

Security function parameter values
k 4 6 8 10 12

A/H0(%) 17.78 31.62 42.67 50.12 56.23
Equilibrium objects

pm 1,923.6 3,420.6 4,561.5 5,421.3 6,082.8
pL 2833.7 4,843.14 6,212.6 7,153.0 7,822.8
SL 0.788 0.876 0.916 0.937 0.951
qL 0.244 0.418 0.536 0.617 0.675
WL 0.126 0.171 0.191 0.202 0.209

{4, 6, 8, 10, 12} representing four- to 12-month periods, we invert (8) to compute Ai. Intuitively, if the
value of ki is high, it is more difficult to implement a successful sabotage attack, which demands more
computational resources Ai.

C.2 Equilibrium Outcomes

For the considered quantitative model, as in Figure 5, we find two DMEs. For the high DME, the
outcomes are as follows. By construction, pH equals the observed price in all cases, resulting in
S (H (pH) ;Ai, ki) = 0.999 for all i, which yields an annualized probability of a successful attack of
1.19%. The DM trade quantity is qH = 0.933, 94.27% of the efficient trade value q

⇤ = 1 � ⇠ = 0.99.
Social welfare in this equilibrium is WH = 0.227. The bitcoin price associated with the efficient DM
good exchange, p⇤ = b

⇤
/B, is USD 11,475.

Table C4 shows the implied pm values and the resulting outcomes in the low equilibrium for each
pair of values {ki, Ai}. We note again that reaching any equilibrium displaying pL > 0 requires
H(pL) > A. Accordingly, greater A values are associated with greater pL values.

Unless stated otherwise, in the subsequent quantitative exercises, we adopt the parameter values
in Table C3 together with k = 10 and A/H0 = 50.12% as the baseline calibration.

C.3 Block Reward Halving and Price Changes

To evaluate changes of ⇢ quantitatively, we exploit the calibrated model to simulate event studies where
⇢ halves at a normalized time t = 0. Such halving events numerically resemble those occurring in 2012,
from 25.03% to 12.51%; in 2020, from 3.57% to 1.78%; and that scheduled in 2024, from 1.67% to
0.83%. The parameter values are as in Table C3, but we allow the number of bitcoin buyers to increase
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over time, with 20 million in 2012, 40 million in 2020, and 60 million in 2024.8 All generations of agents
behave rationally within an inflation era, except for the generation born at t � 1, which myopically
expects holding returns to stay constant.9

Figure C6 shows the resulting price paths. The left (right) columns shows the change in the low
(high) DME price. Consistent with the stationarity of real balances, when ⇢ stays constant, the prices
decrease monthly at that rate. We can see that the low-DME price change, pL,0�pL,�1, is positive in all
cases. However, consistent with Proposition 3, the response of the high equilibrium price is ambiguous.
For the highest supply growth era in panel (a), the change in price is positive. Panel (b) shows that
the transition to the fourth inflation era displays no significant price change. Panel (c) shows that, for
the subsequent halving, the drop in the nominal reward causes an adverse security effect that is not
offset by the scarcity channel; therefore, pH,0 � pH,�1 < 0.

C.4 Volatility Amplification of Fundamental Shocks

We evaluate the equilibrium price response to a moderate bitcoin adoption shock of 10%. Similar to
Figure 7, we decompose the price response into a pure demand effect and a security feedback effect.

Panel (a) of Table C5 shows the results for the baseline calibration. For a positive shock, we can see
that the security feedback is responsible for 4.63% of the price displacement; for a negative shock, this
proportion is more than twice as large, at 12.92%. Panels (b) and (c) show, respectively, analogous price
responses when the initial hashrate of the attacker is 5% higher, as well as when the initial population
of buyers is 5% smaller. We can see that, in these cases, the security feedback effect accounts for
25.38% and 28.59%, respectively, of the price changes caused by a negative shock. Generalizing, we
can expect more amplification when the attacker is more resourceful and for blockchains with fewer
participants.

C.5 Non-fundamental Uncertainty, Expected Time to Attack, and the Saboteur’s
Resources

Since the saboteur’s resources affect the determination of equilibrium prices and security, they must
also affect the price volatility and Bitcoin’s life expectancy regarding sunspot equilibria. But how,
exactly? An intuitive conjecture is that a more resourceful attacker would make the bitcoin price more
unstable and shorten its life expectancy. In this section, we use the quantitative model to construct
an example that shows that such intuition is incorrect.

To build a Type I sunspot equilibrium, we solve for bL, bH , and the security threshold value bm,
using the baseline calibration. We then set b1 = bm+bL

2 and b2 = bH+bL

2 and verify that these values
8This ensures that a stationary DME always exists. These choices do not affect the conclusions, since the goal is to

characterize the direction of price change—for a given n that is constant within each event—and not to forecast price
levels.

9Such myopic agents avoid the necessity of more complicated notation to keep track of time as a state variable, which
would not bring additional insights into the systematic connection between monetary policy changes and the security
model. Of course, myopic agents would create opportunities for the entry of short-lived arbitrageurs, if that were possible,
but that is not our focus. If all agents were rational, the price paths would be smoother, but the conclusions on the
direction of price change would remain the same.

10

Electronic copy available at: https://ssrn.com/abstract=3264448



Figure C6
Block reward halving and price changes
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(a) Prices around reward halving: Beginning of second inflation era (2012)
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(b) Prices around reward halving: Beginning of fourth inflation era (2020)
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(c) Prices around reward halving: Beginning of fifth inflation era (2024)
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Table C5
Fundamental demand shocks and price–security feedback

(a) Baseline parameters (b) Higher attacker hashrate (c) Smaller blockchain
pH = 10, 817 A = 1.05A0, pH = 10, 763.4 n = 0.95, pH = 10, 221.7

Demand Security Total Demand Security Total Demand Security Total
�n impact feedback impact impact feedback impact impact feedback impact

+10% 1,081.7 52.5 1,134.2 1,077.0 84.4 1,161.4 1027.6 29.4 1,057.0
�10% -1,081.7 -160.5 -1,242.2 -1,077.0 -366.2 -1443.2 -1,027.6 -411.4 -1,439.0
(%) demand

total
security
total

total
price

demand
total

security
total

total
price

demand
total

security
total

total
price

+10% 95.37 4.63 10.49 92.73 7.27 10.78 97.22 2.78 10.29
�10% 87.08 12.92 -11.48 74.62 25.38 -13.40 71.41 28.59 -14.00

The parameters values are shown in Table C3.

bt/bt+1 0 b1 b2

0 1 0 0
b1 1� S (E1b, A) S (E1b, A)�1 S (E1b, A) (1� �1)
b2 1� S (E2b, A) S (E2b, A) (1� �2) S (E2b, A)�2

Table C6
Transition probability matrix

satisfy the existence conditions in the proof of Proposition 7. Next, by solving the equation system in
(12), we obtain the associated probabilities �1 and �2. We then repeat this procedure for alternative
values of A. For each equilibrium, we simulate dynamic economies according to Table C6 until an
attack period ⌧ , setting !t=0 = 1 with probability one-half. We then compute the average attack time
(AAT) and the standard deviation of prices until ⌧ . Table C7 shows the outcomes for both the sunspot
(left panel) and non-sunspot (right panel) equilibria. For the latter, one AAT estimate is associated
with each DME, with no price volatility.

What is the effect of an increase in the saboteur’s resources? Contrary to the intuition above, we
observe in this example that volatility decreases with A. Note that the saboteur’s impact on volatility
is twofold. There is a value effect, regarding the determination of pi =

bi

B
, and a probability effect,

regarding the determination of the elements in Table C6. We can see that, as A increases, p1 and
p2 become closer to each other, reducing volatility regarding jumps p1 ! p2 and p2 ! p1. On the
probability end, as A increases, state 1 becomes less persistent, while state 2 becomes more persistent.
Intuitively, if attack resources increase, agents only coordinate on the sunspot when the persistence
of the optimistic state is relatively strong, as in this example, which reduces volatility further in the
aggregate.

Turning now to AATs, in the right panel of Table C7, we find striking divergence in security
outcomes when agents ignore sunspots. For the baseline parametrization (the row where A = 1), the
average AATs are 995.65 and 17.29 for the high and low DMEs, respectively. The sunspot AAT value
is much closer to the low DME value, at 23.94, which is intuitive, since all paths visit the high–attack
risk state b1 with positive probability.

We can see that, in contrast to the motivating intuition, sunspot AATs do not decrease with A.
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Sunspot equilibrium (Type I) Non-sunspot equilibria
A p1 p2 �1 �2 Price AAT pL AAT pH AAT

s.d. low high
0.85 5,222 8,357 0.894 0.892 936.95 16.35 5,835 11.62 10,879 5,450
0.9 5,567 8,561 0.883 0.899 906.32 18.51 6,255 12.93 10,867 3,036
1.0 6,287 8,984 0.858 0.922 806.46 23.94 7,153 17.29 10,817 995.65
1.1 7,076 9,429 0.833 0.955 631.13 34.51 8,189 24.59 10.669 335.35
1.15 7,536 9,659 0.822 0.977 457.73 44.97 8,838 34.06 10,480 182.97

Baseline parameter values are described in Table C3. A values are normalized using A0 = 1.

Table C7
Stochastic sunspot equilibria, price volatility, and AATs

Despite its direct negative effect on security (SA < 0), an increase in A has two positive general
equilibrium effects on the average lifetime. First, it raises both p1 and p2, providing miners with better
incentives across states. Second, the increase in A induces less persistence in the riskier state and more
persistence in the safer state. The net effect is an increase in the average life. For example, the sunspot
equilibrium with A = 1.15A0 displays an expected life of 44.97 (87.8% higher than baseline) and is
associated with a reduction from 995.65 to 182.97 for the high-DME lifetime.

Overall, this analysis demonstrates that price stability cannot be used as a reliable proxy for the
strength of an attacker’s commitment against Bitcoin.

D Implications for the Mining Industry and Minting Costs

Unlike institutions in regulated payment systems, bitcoin miners have free entry and exit. In this
section, we investigate the effects of competition intensity on miners’ profits, and we analyze the
perfectly competitive limits for the bitcoin price and mintage costs. These analyses highlight critical
structural differences between mining competition and traditional Cournot competition.

D.1 Miner Entry and Profits

In the system designed by Nakamoto, miners do not compete in prices but, rather, in capacity, similar
to Cournot firms. In both cases, an increase in the number of competitors results in an expansion of
total capacity (Lemma 1). In sharp contrast, however, we find that the bitcoin price can increase in the
total number of miners, a reverse Cournot outcome. This is due to a key structural difference. In the
Nakamoto system, miners do not compete in bitcoin units—minting is beyond anyone’s ability—but,
rather, in units of security inputs.

For the high DME, a larger number of miners leads to a smaller probability of a successful attack,
greater bitcoin demand, and a higher equilibrium valuation. A direct implication of this DME response
is that miners’ profits are less sensitive to entry relative to an economy where prices and security are
not jointly determined.
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Proposition D2. Assume the existence of a high DME with m miners and let ⇧ (bH ,m) denote miners’
value function. (i) An increase in the number of miners increases bH . Moreover, (ii) the general
equilibrium profit response to entry is smaller than its direct impact:

�� d

dm
⇧ (m, bH)

�� <
�� @
@m

⇧ (m, bH)
��.

The intuition for the second part of the proposition is that changes in m have two distinct effects.
First, m drives the intensity of the PoW mining contest, which is always negatively related to equilib-
rium profits. Second, by part (i), the general equilibrium effect on the bitcoin price feeds back on the
real value of the mining reward. The second effect is thus positive, flattening the miner value function
regarding changes in m. For an increase in m,

d

dm
⇧ (m, bH)

| {z }
Profit sensitivity to miner entry

/ �bH

m| {z }
mining contest effect <0

+
dbH

dm|{z}
mining reward effect >0

.

Remark. Proposition 6 indicates that, from the users’ perspective, Bitcoin’s security model amplifies
the price volatility caused by demand-side entry shocks. Proposition D2, on the other hand, indicates
that, from the miners’ viewpoint, it buffers the profit volatility caused by supply-side entry shocks.

D.2 Perfect Mining Competition and Minting Costs

Next, we analyze the competitive limit m ! +1 on the bitcoin price and security. We are also
interested in characterizing the minting cost of a new bitcoin, given by

µ :=
mining costs per block
nominal block reward

=
mC(h)

 
.

Because our focus here is on mining costs, we consider a family of cost functions that include linear
and convex specifications: C(h) = h

� , � 2 {1, 2, ...},  > 0.
Focusing on stationary allocations, we first ask: what are the hashrate and security limits when

m ! +1? For that, consider a high DME and its corresponding hash investment from Lemma 1:
h = (m�1

m2 (⇢�1
2 ) �

⇢

bH

�
)
1
� . With linear mining costs, we then obtain

lim
m!+1

H =

✓
⇢� 1

2

◆
�

⇢

b
1
H


, (D.1)

lim
m!+1

S(H,A) = 1�
✓

A

b
1
H

2

(⇢� 1)

⇢

�

◆
k

, (D.2)

where �1 := limm!+1 �. Note that, by Lemma 2, we have b
1
H

< b
⇤, and, thus, H1

<

⇣
⇢�1
2

⌘
�

⇢

b
⇤



and S
1

< 1. Therefore, equations (D.1) and (D.2) provide a well-defined limit for both the system’s
hashrate and security.

With quadratic mining costs, we have H(bH) =
⇣�

m�1
2

� ⇣
⇢�1
2

⌘
�

⇢
bH

⌘ 1
2 . Unlike the linear case, H

scales up proportionally with m, implying that no finite limit exists for H
1; thus S

1 = 1. One can
verify that this implication generalizes to other convex cost functions, as in the following proposition.
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Proposition D3. Consider the limit m ! +1 of a high DME. (i) With linear mining costs, the
security level associated with p

1
H

is given by (D.2), and µ
1
H

= �

⇢
p
1
H

. (ii) With convex mining costs
(� > 1), if a DME exists, it is unique, and the equilibrium price p

1 does not depend on the security
function. Moreover, µ1 = 1

�

⇣
�

⇢
p
1
⌘
.

The fact that H grows unboundedly with � > 1 stems from the lack of price decline together with
C

0(h) ! 0, allowing m⇥h to grow unboundedly, and resulting in an entirely secure system. Therefore,
p
1 becomes the only equilibrium price and it must coincide with the extrinsic price with S ! 1. The

finding that convex mining costs can generate such a striking security outcome is, of course, not meant
to represent a realistic outcome. It is not robust to the presence of positive miner entry costs. It
provides, however, a new theory perspective on how miner competition can deliver implications that
differ from those in familiar settings like Cournot’s.

The competitive limit minting cost in Proposition D3 provides a sharp prediction. The limit cost
must be equal to a fraction of the limit price, as given by the inverse of the cost function curvature
coefficient. For example, with quadratic costs and ⇠ = 0, the model calibration implies:

µ
1 =

1

2|{z}
1/�

⇥ �

⇢

✓
f⇢

�

⇢� � (1� f)

◆ 1
� n

B
�

(1��)
�

| {z }
p1=$11,008.7

= $5, 504.35.

Therefore, the empirical observation that the mintage cost per bitcoin is below the token price does
not constitute direct evidence of market power in the mining sector; neither that miners require a
compensation premium for price risk.

E Proof of Lemmas

In this section, we provide the proofs to the lemmas in the main text and we establish an additional
lemma. We sometimes avoid displaying the dependency of S and its derivatives on (H(b), A) and H(b)

on b for compactness of notation.

Proof of Lemma 1

Part (i). Miner j takes the price as given and solves maxhjt
� tE1

t pt+1 ⇥ P(hjt, h�jt) � C(hjt),
with first-order condition � tE1

t pt+1
@P(hjt,h�jt)

@hjt
= C

0(hjt). Using @P(hjt,h�jt)
@hjt

= Ht�hjt

H
2
t

, we obtain

� tE1
t pt+1

Ht�h
⇤
jt

H
2
t

= C
0(h⇤

jt
). With symmetric identical miners, hjt = ht, for all j, and Ht = mht, so

the equilibrium symmetric hashrate satisfies C
0(h⇤t )h

⇤
t = � tE1

t pt+1
�
m�1
m2

�
.

Parts (ii) to (iv) can be proven by applying the implicit function theorem to express the near-
equilibrium response of h

⇤ to each parameter change. For (ii), we have dh
⇤

d 
[C 0(h⇤) + h

⇤
C

00(h⇤)] �

�E1
t pt+1

m�1
m2 = 0. Since H

⇤ = mh
⇤, then dH

⇤

d 
=

�E1
t
pt+1

m�1
m

C0(h⇤)+h⇤C00(h⇤) > 0. The effect of a change in resale
price expectations is analogous. For (iii), we simplify the exposition without much loss of generality
assuming m � 2 to be a continuous variable. From H

⇤ = mh
⇤, it follows that dH

⇤

dm
= h

⇤ +m
dh

⇤(m)
dm

.
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From differentiating the first-order condition, dH
⇤

dm
= h

⇤ � m�2
m2

� tE1
t
pt+1

(C0+h⇤C00) , which implies that

dH
⇤

dm
C

0(h⇤) = h
⇤
C

0(h⇤)�
✓
m� 2

m� 1

◆✓
m� 1

m2

◆
� tE1

t pt+1
C

0(h⇤)

C 0(h⇤) + h⇤C 00(h⇤)
,

= h
⇤
C

0(h⇤)

✓
1�

✓
m� 2

m� 1

◆✓
C

0(h⇤)

C 0(h⇤) + h⇤C 00(h⇤)

◆◆
.

Note that C
0(h⇤) > 0, m�2

m�1 < 1, and, by C
00 � 0 and h

⇤ � 0, C
0

C0+h⇤C00  1. Therefore, the right-hand
side of equation above is positive and we conclude that dH

⇤

dm
> 0. For (iv), note that, if C 0 marginally

increases pointwise for every h, then dh
⇤
< 0 to satisfy equation (1); thus dH

⇤
< 0.

e

Proof of Lemma 2

The proof of this lemma extends to this environment the analyses of Lagos and Wright (2003) and
Rocheteau and Wright (2005). Here, sellers’ problem is relatively simple, since the condition �E1

t

pt+1

pt
=

1
zt

makes the DM good supply perfectly elastic. Buyers’ program can be re-expressed inserting the
budget constraint in (4), as follows

max
bit�0

�bit + St

0

@f max
q
d

t
 bit

zt

⇢
u

⇣
q
d

it

⌘
+ �E1

t

✓⇣
bit � ztq

d

it

⌘
pt+1

pt

◆�
+ (1� f) �E1

t

✓
bit

pt+1

pt

◆1

A

| {z }
V (bit)

,

or, more compactly, as maxbit�0 {�bit + StV (bit)}. The first-order condition is �1+StV
0 (bit)  0 and

StV
0 (bit) = 1 if bit > 0.
The value q

⇤
t is the solution to the unconstrained optimization within V , u0 (q⇤t ) = zt�E1

t

pt+1

pt
= 1.

Let b
⇤
t = q

⇤
t zt. If bit � b

⇤
t , a buyer demands q

⇤
t and we have

V (bit) = f

⇢
u (q⇤t ) + �E1

t

✓
(bit � b

⇤
t )

pt+1

pt

◆�
+ (1� f) �E1

t

✓
bit

pt+1

pt

◆
,

and V
0 (bit) = �E1

t

pt+1

pt
.

If bit < b
⇤
t , the constraint in the DM is binding: q

d
t = bit

zt
. In that case, a buyer that meets a seller

carries no bitcoins to the next CM and we have

V
0 (bit) =

f

zt
u
0
✓
bit

zt

◆
+ (1� f) �E1

t

pt+1

pt
. (E.1)

Given u
0 (0) = +1, if St > 0, �1+StV

0 (0) = +1. Since u
00
< 0, �1+StV

0 (b) is a strictly decreasing
function of b for all b 2 [0, b⇤]. Moreover, for b � b

⇤, the first-order condition is �1 + StV
0 (b) =

�1+St�E1
t

pt+1

pt
 0. Clearly, if St�E1

t

pt+1

pt
> 1, the buyers’ problem has no solution, since buyers would

demand an unbounded amount of tokens. If, on the other hand, St�E1
t

pt+1

pt
< 1, there is a unique

b̃ < b
⇤ that satisfies StV

0
⇣
b̃

⌘
= 1. Using the market clearing conditions nBit = Bt and zt�E1

t

pt+1

pt
= 1
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in StV
0
⇣
b̃

⌘
= 1, and rearranging, we obtain the expression in the lemma.

e

Proof of Lemma 3

Buyer i’s program can be expressed as

max
{cit,lit,bit,µit}�0

8
>>><

>>>:
cit � lit + fB

✓
S (u (qB (bit))) +

�

�
µit

◆

| {z }
type-B meeting

+ fM

✓
u (qM (µit)) +

�S

⇢
bit

◆

| {z }
type-M meeting

+fMB (S (u (qMB (µit, bit))) + (1� S) (u (qMB (µit, 0))))| {z }
type-MB meeting

+ (1� f) �

✓
Sbit

⇢
+

µit

�

◆

| {z }
no meeting

9
>>>=

>>>;
, (E.2)

subject to a budget constraint given by cit + bit + µit  lit + Tt, where T is a transfer to accommodate
changes in M . Each bracketed term in the above program corresponds to a particular meeting type
during the DM; the last term reflects the expected residual value of bitcoin and fiat currency balances
if the buyer does not find trade opportunities. Combining (E.2) with the budget constraint, using
qMB (µ, 0) = qM (µ), and re-arranging, we obtain

max
{bit,µit}�0

�µit � bit + Tt + fBS (u (qB (bit))) + (fM + (1� S) fMB) (u (qM (µit)))

+SfMB (u (qMB (µit, bit))) + �

✓
(1� f + fB)

µit

�
+ (1� f + fM )S

bit

⇢

◆
.

In an interior solution where b > 0 and µ > 0, the first-order conditions with respect to b and µ yield
equations (13) and (14), respectively.

e

We present an additional lemma that is used in the proofs of the proposition in the main text.

Lemma E1. Consider a stationary DME b satisfying y(b, ✓)�1 = 0, y(b, ✓) := �S

⇢
(f (u0 (q (b))� 1) + 1)

and ✓ represents a given parameter—note that b satisfying y(b, ✓)� 1 = 0 is equivalent to (8). By the
implicit function theorem, in the vicinity of bss, we have db

d✓
= �y✓

yb
. At b = bH , we have yb < 0; while at

b = bL, yb > 0. Therefore, at bH the sign of db

d✓
and that of y✓ coincide; while at bL they have opposite

sign.

Proof: By definition, D(b) = y (b, ✓) b, therefore, D0 (b) = yb (b, ✓) b+y (b, ✓). As shown in the proof
of Proposition 2, D0 (b) is less than one at bH and greater than one at bL. For bH , we must then have
yb (bH , ✓) b+ y (bH , ✓) < 1, which implies that

yb (bH , ✓) <
1� y (bH , ✓)

bH
= 0.

Analogously, for bL, we must have yb (bL, ✓) bL + y (bL, ✓) > 1, which implies that yb (bL, ✓) > 0.
e
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F Proofs of Internet Appendix Propositions

Proof of Proposition B1

In the neighborhood of a stationary DME value bss, bt = D (bt+1) can be approximated as bt ⇡ D(bss)+

D
0 (bss) (bt+1 � bss). Using bss = D (bss), we can express the approximation as bt+1 � bss ⇡ bt�bss

D0(bss)
.

Therefore, bt+1 ⇡ bss +
b0�bss

(D0(bss))
t . The slope of D at bss thus determines the local stability properties.

When |D0 (bss)| > 1, bt approaches bss for paths that start at b0 near bss. When |D0 (bss)| < 1, bt

diverges from bss.
Consider now the low DME, bL. Since D(b) < b for b < bL, we must have D

0(bL) > 1. Therefore,
paths that start at b0 near bL must display bt ! bL. When D

�1(bt) is single valued, b̂ = bH , so for any
initial value b0 2 (0, bH) there is a equilibrium with the property that bt ! bL. Otherwise, if D�1(bt)

is a correspondence, we can have b̂ < bH .
Consider now the highest DME, bH . Since D must cross b from above, we must have D

0 (bH) < 1.
The system could only display local stability around bH if D0 (bH) < �1. To characterize such case
using (B.1), we must compute D

0 (b) near bH . If S (bH , A) ⇡ 1, SH ⇡ 0, and for b < b
⇤:

D
0 (b) =

�

⇢

✓
1� f + f (q (b) + ⇠)��

✓
1� �

q(b)

q(b) + ⇠

◆◆
. (F.1)

From (B.1), it follows that qH = �bH

⇢n
can be expressed as qH =

⇣
�f

⇢��(1�f)

⌘ 1
� � ⇠. Combining the latter

with (F.1), and rearranging:

D
0 (bH) =

✓
1� �

⇢
(1� f)

◆ 
1� �

(�f)
1
� � ⇠ (�f + ⇢� �)

1
�

(�f)
1
�

!
+
�

⇢
(1� f) . (F.2)

Note that given our parametric restrictions, the right-hand side of the expression above is a continuous
and decreasing function of the utility parameter �. Defining �̂ by D

0 (bH , �̂) = �1 from (F.2), we
conclude that bH is locally stable if � > �̂ and locally unstable otherwise.

Proof of Proposition D2

We argue first that dbH

dm
> 0. From Lemma E1, it suffices that ym = SHHm

�

⇢
{f (u0 (q (b))� 1) + 1} > 0,

which holds since Hm > 0 from Lemma 1 and SH > 0 from (2).
To show that

�� d

dm
⇧ (m, bH)

�� <
�� @
@m

⇧ (m, bH)
��, we note that the maximum attainable value for

miners in any given mining stage is ⇧ = maxhj�0
hj

H
⇥ � tE1

t pt+1 � hj . Using (1), h = H

m
, and (6):

⇧ (bH ,m) =
1

m

�

⇢

✓
⇢� 1

2

◆
bH �

✓
m� 1

m2

◆
�

⇢

✓
⇢� 1

2

◆
bH =

�

⇢

✓
⇢� 1

2m2

◆
bH .
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Therefore,

d

dm
⇧ (bH ,m) = { � 1

m
bH

| {z }
competition effect: @⇧

@m
<0

+
dbH

dm|{z}
mining reward effect >0

}
✓
⇢� 1

2m2

◆
�

⇢
, (F.3)

which proves the inequality in the proposition.
e

Proof of Proposition D3

Consider the average minting cost when � = 1, µt =
mh

⇤
t

 t
. Substituting for the optimal hashrate and

the block reward at bH

µt =
m� 1

m

�

⇢

✓
⇢� 1

2

◆
bH

| {z }
mh⇤

⇥ 1

 t

=
m� 1

m

�

⇢
pH,t,

where the last equality uses  t

Bt
= ⇢�1

2 . Thus, limm!+1 µt =
�

⇢
p
1
H,t

, proving part (i).
For part (ii), consider C(h) = h

� , � 2 {2, 3, ...}. Since S
1 = 1, DME uniqueness follows from

Lemma 2.
We now derive the minting cost competitive limit. From Lemma 1, in a stationary allocation,

h
⇤
C

0(h⇤) = m�1
m2

�

⇢

⇣
⇢�1
2

⌘
b. Since limm!+1 b is finite, we have limm!+1 h

⇤
C

0(h⇤) = 0, implying

that limm!+1 h
⇤ = 0. Thus, limm!+1 µt = limm!+1

mC(h⇤(m))
 

leads to an indeterminacy of the
type 1⇥ 0. However, one can rearrange the expression as C(h⇤(m))

 

1
m�1 and compute the limit using

L’Hospital rule:

lim
m!+1

µt = lim
m!+1

⇣
1
 t
C (h⇤(m))

⌘0

(m�1)0
= lim

m!+1

⇣
1
 t
C

0 (h⇤(m)) dh
⇤

dm

⌘

(�m�2)
. (F.4)

From Lemma 1, dh
⇤

dm
= �� tE1

t
pt+1(m�2)

m3[C0(h⇤)+h⇤C00(h⇤)] . Substituting in (F.4), we obtain

lim
m!+1

µt = lim
m!+1

1
 t
C

0 (h⇤)

�m�2

✓
�� tE1

t pt+1 (m� 2)

m3[C 0(h⇤) + h⇤C 00(h⇤)]

◆

= lim
m!+1

✓
C

0 (h⇤)

C 0(h⇤) + h⇤C 00(h⇤)

◆✓
m� 2

m

◆
�

⇢
pt =

1

�

✓
�

⇢
p
1
t

◆
,

which concludes the proof.
e
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