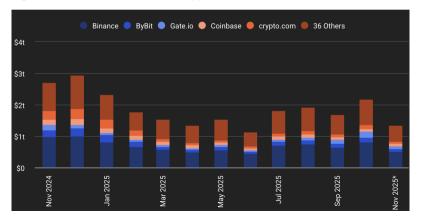
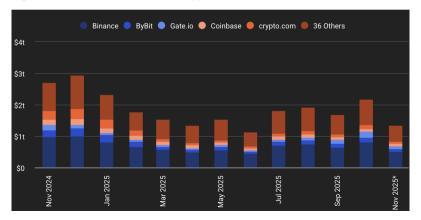
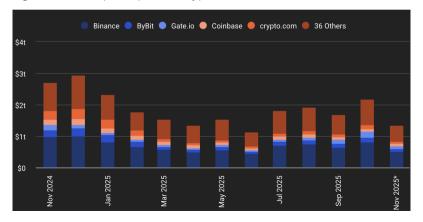

An Anatomy of (On-Chain) Crypto Trading

Shihao Yu¹


¹Singapore Management University, Lee Kong Chain School of Business

November 27, 2025 SMU Web3 Symposium


- ▶ In 2025, crypto spot trading \approx 80 billion USD per day
- ▶ In comparison, US equities spot trading \approx 800 billion USD per day
- ightharpoonup Crypto pprox 10% of US equities
- ▶ Increasing institutional participation: crypto ETFs, stablecoins, and more


- ▶ In 2025, crypto spot trading \approx 80 billion USD per day
- ▶ In comparison, US equities spot trading \approx 800 billion USD per day
- ▶ Crypto $\approx 10\%$ of US equities
- Increasing institutional participation: crypto ETFs, stablecoins, and more

- ▶ In 2025, crypto spot trading \approx 80 billion USD per day
- ▶ In comparison, US equities spot trading \approx 800 billion USD per day
- ► Crypto $\approx 10\%$ of US equities
- Increasing institutional participation: crypto ETFs, stablecoins, and more

- ▶ In 2025, crypto spot trading \approx 80 billion USD per day
- ▶ In comparison, US equities spot trading \approx 800 billion USD per day
- ▶ Crypto $\approx 10\%$ of US equities
- ▶ Increasing institutional participation: crypto ETFs, stablecoins, and more

Two types of exchanges

Centralized exchanges (CEXs)

► Examples: Binance, Coinbase, Crypto.com

Decentralized exchanges (DEXs)

Examples: Uniswap, PancakeSwap, and many others

Centralized vs. decentralized exchanges

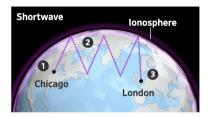
	CEX	DEX
Operator	Centralized entity	Smart contracts
Access	Regulated; KYC/AML	Permissionless
Execution Venue	Off-chain internal ledger	On-chain settlement
Custody	Custodial (exchange holds assets)	Non-custodial (user holds assets)
Trading Model	Continuous & CLOB	Batched & AMM

- ▶ Like equities exchanges in TradFi, trading on CEXs uses a continuous limit order book (LOB)
- Orders are sequenced at a first-come-first-serve (FCFS) basis
- ▶ **Speed** is crucial, leading to an arms race between high-frequency traders (HFTs):

- ▶ Like equities exchanges in TradFi, trading on CEXs uses a continuous limit order book (LOB)
- ▶ Orders are sequenced at a first-come-first-serve (FCFS) basis
- ▶ **Speed** is crucial, leading to an arms race between high-frequency traders (HFTs):

- Like equities exchanges in TradFi, trading on CEXs uses a continuous limit order book (LOB)
- ► Orders are sequenced at a first-come-first-serve (FCFS) basis
- ▶ **Speed** is crucial, leading to an arms race between high-frequency traders (HFTs):

(a) Low-latency market data

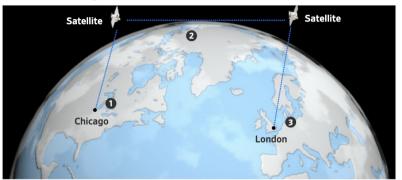

(b) Colocation

(c) High-speed transmission

Fibers and microwaves are in the past...

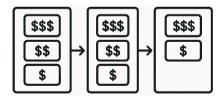
Current technology

- 1. Data is encoded, which can take several milliseconds, and transmitted by shortwave radio from Chicago.
- **2.** The data signal bounces off the ionosphere, an upper layer of the atmosphere.
- 3. The signal is received in London. The speed of the process varies depending on the setup, but one provider says it delivers the data in 29.6 milliseconds.

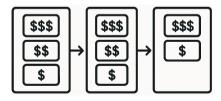

- **1.** Microwave antennas send data from Chicago to New York.
- **2.** The data travels under the Atlantic by fiber-optic cable. Fiber transmits data at about two-thirds the speed of light, slower than lasers or radio waves moving through air or space.
- **3.** The data is received in London after 33.5 milliseconds.

Now satellite

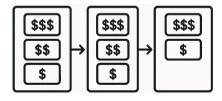
Masters of the Universe

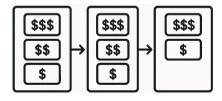

Satellite networks could speed up data transmission for high-frequency trading firms.

Potential technology



- **1.** A radio antenna in Chicago sends data up to a satellite.
- 2. The satellite receives the data and relays it via laser to another satellite, which then transmits it towards London
- 3. The data arrives in London. It is not yet known how long this will take, but one satellite operator has touted speeds of less than 29 milliseconds.


- ▶ Operating on blockchains, DEXs inherit the infrastructure of the underlying blockchain
- ▶ On Ethereum, transactions are executed in blocks every 12 seconds
- ▶ Within a block, execution priority is based on the gas fees traders bid
- ► Traders no longer compete on speed, but on fees

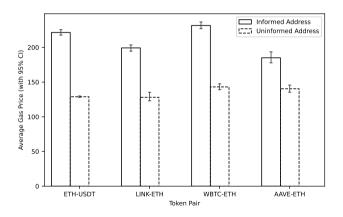

- ▶ Operating on blockchains, DEXs inherit the infrastructure of the underlying blockchain
- ► On Ethereum, transactions are executed in blocks every 12 seconds
- ▶ Within a block, execution priority is based on the gas fees traders bid
- ► Traders no longer compete on speed, but on fees

- ▶ Operating on blockchains, DEXs inherit the infrastructure of the underlying blockchain
- ▶ On Ethereum, transactions are executed in blocks every 12 seconds
- ▶ Within a block, execution priority is based on the gas fees traders bid
- ► Traders no longer compete on speed, but on fees

- ▶ Operating on blockchains, DEXs inherit the infrastructure of the underlying blockchain
- ▶ On Ethereum, transactions are executed in blocks every 12 seconds
- ▶ Within a block, execution priority is based on the gas fees traders bid
- ► Traders no longer compete on speed, but on fees

- ► In Capponi, Jia, and Yu (2025, forthcoming in RFS), we study the impact of the **fee bidding mechanism** on the **price discovery process** on DEXs
- ► The fee bidding mechanism allows us to quantify the willingness to pay for their information order by order
- ▶ We **identify informed traders** based on their past price impacts...
- ...and then analyze their bidding behavior out of sample
- ▶ We focus on Uniswap v2 on Ethereum. Sample between Nov 2020 and Aug 2021 for ETH-USDT, WBTC-ETH, and a few others

- ► In Capponi, Jia, and Yu (2025, forthcoming in RFS), we study the impact of the **fee bidding mechanism** on the **price discovery process** on DEXs
- ► The fee bidding mechanism allows us to quantify the **willingness to pay** for their information order by order
- ► We **identify informed traders** based on their past price impacts...
- ...and then analyze their bidding behavior out of sample
- ▶ We focus on Uniswap v2 on Ethereum. Sample between Nov 2020 and Aug 2021 for ETH-USDT, WBTC-ETH, and a few others


- ► In Capponi, Jia, and Yu (2025, forthcoming in RFS), we study the impact of the **fee bidding mechanism** on the **price discovery process** on DEXs
- ► The fee bidding mechanism allows us to quantify the **willingness to pay** for their information order by order
- ▶ We **identify informed traders** based on their past price impacts...
- ...and then analyze their bidding behavior out of sample
- ► We focus on Uniswap v2 on Ethereum. Sample between Nov 2020 and Aug 2021 for ETH-USDT, WBTC-ETH, and a few others

- ► In Capponi, Jia, and Yu (2025, forthcoming in RFS), we study the impact of the **fee bidding mechanism** on the **price discovery process** on DEXs
- ► The fee bidding mechanism allows us to quantify the **willingness to pay** for their information order by order
- ▶ We **identify informed traders** based on their past price impacts...
- ► ...and then analyze their bidding behavior out of sample
- ▶ We focus on Uniswap v2 on Ethereum. Sample between Nov 2020 and Aug 2021 for ETH-USDT, WBTC-ETH, and a few others

- ► In Capponi, Jia, and Yu (2025, forthcoming in RFS), we study the impact of the **fee bidding mechanism** on the **price discovery process** on DEXs
- ► The fee bidding mechanism allows us to quantify the **willingness to pay** for their information order by order
- ▶ We **identify informed traders** based on their past price impacts...
- ► ...and then analyze their bidding behavior out of sample
- ► We focus on Uniswap v2 on Ethereum. Sample between Nov 2020 and Aug 2021 for ETH-USDT, WBTC-ETH, and a few others

Research paper #1: Price discovery on DEXs (continued)

► **Key takeaway**: informed traders on DEXs bid higher fees using a jump bidding strategy, revealing their private information, and contributing to price discovery.

Beyond Ethereum

- ▶ DEXs are not only on Ethereum. They are deployed on a wide spectrum of blockchains, including layer-1 (L1) blockchains, layer-2 (L2) blockchains, and side chains.
- ▶ On L2s, DEXs employ a diverse set of order sequencing rules and block speeds:

Chain	Rule	Block time
Arbitrum	FCFS + Timeboost	250ms
Base	Fee bidding	$2s \rightarrow 200ms$
Optimism	Fee bidding	2s o 100ms

► As block speed increases, fee bidding converges to FCFS

Beyond Ethereum

- ▶ DEXs are not only on Ethereum. They are deployed on a wide spectrum of blockchains, including layer-1 (L1) blockchains, layer-2 (L2) blockchains, and side chains.
- ▶ On L2s, DEXs employ a diverse set of order sequencing rules and block speeds:

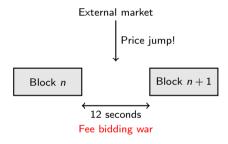
Chain	Rule	Block time
Arbitrum	FCFS + Timeboost	250ms
Base	Fee bidding	$2s \to 200 ms$
Optimism	Fee bidding	$2s \to 100ms$

[►] As block speed increases, fee bidding converges to FCFS

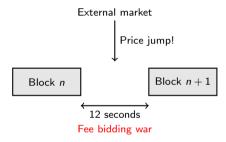
Beyond Ethereum

- ▶ DEXs are not only on Ethereum. They are deployed on a wide spectrum of blockchains, including layer-1 (L1) blockchains, layer-2 (L2) blockchains, and side chains.
- ▶ On L2s, DEXs employ a diverse set of order sequencing rules and block speeds:

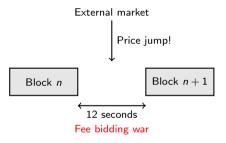
Chain	Rule	Block time
Arbitrum	FCFS + Timeboost	250ms
Base	Fee bidding	$2s \to 200 ms$
Optimism	Fee bidding	$2s \to 100ms$


► As block speed increases, fee bidding converges to FCFS

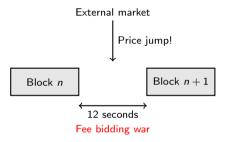
- ▶ In a new paper with Jia (2025), we analyze the impact of block speed on DEX trading
- On Ethereum or slow blockchains:


- ▶ What if blocks are faster?
 - Can liquidity providers (LPs) withdraw their liquidity quicker?
 - ► How about arbitrageurs?
 - Overall market liquidity?

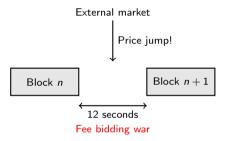
- ▶ In a new paper with Jia (2025), we analyze the impact of block speed on DEX trading
- ► On Ethereum or slow blockchains:


- ► What if blocks are faster?
 - Can liquidity providers (LPs) withdraw their liquidity quicker?
 - ► How about arbitrageurs?
 - Overall market liquidity?

- ▶ In a new paper with Jia (2025), we analyze the impact of block speed on DEX trading
- ► On Ethereum or slow blockchains:


- ► What if blocks are faster?
 - ► Can liquidity providers (LPs) withdraw their liquidity quicker?
 - ► How about arbitrageurs?
 - ► Overall market liquidity?

- ▶ In a new paper with Jia (2025), we analyze the impact of block speed on DEX trading
- ► On Ethereum or slow blockchains:


- ► What if blocks are faster?
 - ► Can liquidity providers (LPs) withdraw their liquidity quicker?
 - ► How about arbitrageurs?
 - Overall market liquidity?

- ▶ In a new paper with Jia (2025), we analyze the impact of block speed on DEX trading
- ► On Ethereum or slow blockchains:

- ► What if blocks are faster?
 - ► Can liquidity providers (LPs) withdraw their liquidity quicker?
 - ► How about arbitrageurs?
 - Overall market liquidity?

- ▶ In a new paper with Jia (2025), we analyze the impact of block speed on DEX trading
- ► On Ethereum or slow blockchains:

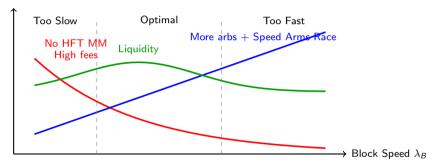
- ▶ What if blocks are faster?
 - ► Can liquidity providers (LPs) withdraw their liquidity quicker?
 - ► How about arbitrageurs?
 - ► Overall market liquidity?

- ► We derived **closed-form solutions** for the following
 - ► Arbitrageur fee bidding
 - ► LP withdrawal threshold
 - ► Passive liquidity depth
 - ► Arbitrageur and LP speed investments
 - ▶ Welfare
- ▶ But only quick intuitions today...

- ► We derived **closed-form solutions** for the following
 - ► Arbitrageur fee bidding
 - ► LP withdrawal threshold
 - ► Passive liquidity depth
 - ► Arbitrageur and LP speed investments
 - ▶ Welfare
- ▶ But only quick intuitions today...

- ► We derived **closed-form solutions** for the following
 - ► Arbitrageur fee bidding
 - ► LP withdrawal threshold
 - ► Passive liquidity depth
 - ► Arbitrageur and LP speed investments
 - ▶ Welfare
- ▶ But only quick intuitions today...

- ► We derived **closed-form solutions** for the following
 - ► Arbitrageur fee bidding
 - ► LP withdrawal threshold
 - ► Passive liquidity depth
 - ► Arbitrageur and LP speed investments
 - ▶ Welfare
- ▶ But only quick intuitions today...


- ► We derived **closed-form solutions** for the following
 - Arbitrageur fee bidding
 - ► LP withdrawal threshold
 - ► Passive liquidity depth
 - Arbitrageur and LP speed investments
 - ▶ Welfare
- ▶ But only quick intuitions today...

- ► We derived **closed-form solutions** for the following
 - ► Arbitrageur fee bidding
 - ► LP withdrawal threshold
 - ► Passive liquidity depth
 - ► Arbitrageur and LP speed investments
 - ▶ Welfare
- ▶ But only quick intuitions today...

- ► We derived **closed-form solutions** for the following
 - Arbitrageur fee bidding
 - ► LP withdrawal threshold
 - ► Passive liquidity depth
 - Arbitrageur and LP speed investments
 - ▶ Welfare
- ► But only quick intuitions today...

The block speed trade-off

► Takeaway: Optimal block speed may exist in between!

- ► Crypto trading is becoming more mainstream with more institutional participation
- ▶ DEXs are an important part of the crypto trading ecosystem
- ▶ DEXs are unique in their market designs
- ▶ It provides a great laboratory to study the optimal design of trading mechanisms
- ► The implications can go beyond DeFi
- ► More research is needed!

- ► Crypto trading is becoming more mainstream with more institutional participation
- ▶ DEXs are an important part of the crypto trading ecosystem
- ▶ DEXs are unique in their market designs
- ▶ It provides a great laboratory to study the optimal design of trading mechanisms
- ► The implications can go beyond DeFi
- ► More research is needed!

- ► Crypto trading is becoming more mainstream with more institutional participation
- ▶ DEXs are an important part of the crypto trading ecosystem
- ► DEXs are unique in their market designs
- ▶ It provides a great laboratory to study the optimal design of trading mechanisms
- ► The implications can go beyond DeFi
- ► More research is needed!

- ► Crypto trading is becoming more mainstream with more institutional participation
- ▶ DEXs are an important part of the crypto trading ecosystem
- ► DEXs are unique in their market designs
- ▶ It provides a great laboratory to study the optimal design of trading mechanisms
- ► The implications can go beyond DeFi
- ► More research is needed!

- ► Crypto trading is becoming more mainstream with more institutional participation
- ▶ DEXs are an important part of the crypto trading ecosystem
- ► DEXs are unique in their market designs
- ▶ It provides a great laboratory to study the optimal design of trading mechanisms
- ► The implications can go beyond DeFi
- ► More research is needed!

- ► Crypto trading is becoming more mainstream with more institutional participation
- ▶ DEXs are an important part of the crypto trading ecosystem
- ► DEXs are unique in their market designs
- ▶ It provides a great laboratory to study the optimal design of trading mechanisms
- ► The implications can go beyond DeFi
- ► More research is needed!