MEASURE OF LOCATION-BASED ESTIMATORS
IN SIMPLE LINEAR REGRESSION
August 15, 2013

XIJIA LIU† AND DANIEL PREVE‡

Abstract. In this note we consider certain measure of location-based estimators (MLBEs) for
the slope parameter in a linear regression model with a single stochastic regressor. The median-
unbiased MLBEs are interesting as they can be robust to heavy-tailed samples and, hence,
preferable to the ordinary least squares estimator (LSE). Two different cases are considered as
we investigate the statistical properties of the MLBEs. In the first case, the regressor and error is
assumed to follow a symmetric stable distribution. In the second, other types of regressions, with
potentially contaminated errors, are considered. For both cases the consistency and exact finite-
sample distributions of the MLBEs are established. Some results for the corresponding limiting
distributions are also provided. In addition, we illustrate how our results can be extended to
include certain heteroskedastic and multiple regressions. Finite-sample properties of the MLBEs
in comparison to the LSE are investigated in a simulation study.

1. Introduction

In regression analysis, an important question is how to obtain suitable estimators for the slope
parameter β in the simple linear regression

$$y_i = \alpha + \beta x_i + u_i.$$ \hfill (1)

An example of such an estimator is the LSE for β, given by

$$\hat{\beta}_{LS} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \beta + \frac{\sum_{i=1}^{n} (x_i - \bar{x})(u_i - \bar{u})}{\sum_{i=1}^{n} (x_i - \bar{x})^2},$$ \hfill (2)

which is consistent under quite general assumptions. A justification for the LSE is provided
by the Gauss-Markov theorem which states that if the explanatory variable is non-stochastic
and the regression errors are uncorrelated random variables with zero mean and common finite
variance, then $\hat{\beta}_{LS}$ has the minimum variance of all linear unbiased estimators for β. However,
the method of ordinary least squares is sensitive to large values of the error term. For this
reason, alternative estimators such as the LAD estimator (Koenker and Bassett, 1978) that
are less sensitive to outliers have been proposed. Estimators that are robust to heavy-tailed
error distributions can also be obtained using nonparametric (distribution free) techniques, an
example being the Theil-Sen estimator (Sen, 1968b).

In this note we consider robust MLBEs for the slope parameter in (1) and investigate their
finite-sample and asymptotic properties in a parametric setting. These estimators are based

Key words and phrases. simple linear regression, robust estimators, measure of location, stable distribution,
contaminated error, finite-sample, exact distribution, special functions.

† Uppsala University. ‡ City University of Hong Kong. Address correspondence to Xijia Liu, Department of
Statistics, Uppsala University, Box 513, 751 20 Uppsala, Sweden; e-mail: xijia.liu@statistics.uu.se. We are grateful
to Sune Karlsson, Rolf Larsson, Johan Lyhagen and seminar participants at Uppsala University for their comments
and suggestions. All remaining errors are our own. The second author gratefully acknowledges partial research
support from the Jan Wallander and Tom Hedelius Research Foundation (grant P 2006-0166:1) and the Sim Kee
Boon Institute for Financial Economics at Singapore Management University.
on measures of location, such as the sample median and trimmed mean. Although our results
are more general, we focus on the case where the explanatory variable, which is assumed to be
stochastic, follows a symmetric stable distribution and the error is either symmetric stable, with
the same index of stability as the explanatory variable, or a normal mixture. We also consider
a conditionally heteroskedastic specification. The MLBEs are similar to the estimator of Preve
and Medeiros (2011) in the sense that they are order statistics of successive ratios between the
response and explanatory variable in a simple linear regression, and that their exact finite-sample
distributions can be obtained for a number of interesting cases.

Stable distributions are a broad class of probability distributions that allow for asymmetry
and heavy-tails. A basic property of stable distributions is that sums of independent stable
random variables, with common index of stability, follow a stable distribution. Moreover, by the
generalized central limit theorem (GCLT), stable distributions are the only possible nondegen-
erate limiting distributions for properly normalized sums of independent, identically distributed
(i.i.d.) random variables. Regressions with symmetric stable errors have been considered by
Blattberg and Sargent (1971), Kadiyala (1972), Smith (1973) and more recently by Nolan and
Ojeda-Revah (2013) and Hallin, Swan, Verdebout and Veredas (2013). A stable, potentially
non-normal, error distribution can be motivated in a number of ways. For example, in econom-
ics, the error \(u_i \) may be thought of as the sum of a large number of i.i.d. stable random variables
(say, decisions of investors). If the stable assumption is relaxed, in view of the GCLT, the
distribution of \(u_i \) will be approximately stable. There is a large amount of evidence suggesting
that many economic variables are best described by stable distributions with infinite variances.
Classical examples include common stock price changes and changes in other speculative prices,
 cf. Mandelbrot (1963) and Fama (1965).\(^1\)

For an example of a MLBE, consider the incomplete pairwise-slope estimator for \(\beta \) based on
a sample of size \(n \)

\[
\hat{\beta}_{PS} = \text{med}\left\{ \frac{y_2 - y_1}{x_2 - x_1}, \frac{y_4 - y_3}{x_4 - x_3}, \ldots, \frac{y_{2k} - y_{2k-1}}{x_{2k} - x_{2k-1}} \right\} = \beta + \text{med}\{z_1, z_2, \ldots, z_k\},
\]

(3)

where

\[
z_i = \frac{u_{2i} - u_{2i-1}}{x_{2i} - x_{2i-1}},
\]

and \(\text{med}\{z_1, z_2, \ldots, z_k\} \) is the sample median of \(z_1, z_2, \ldots, z_k \).\(^2\) If the \(z_i \) are i.i.d. continuous
random variables, standard results for order statistics show that the exact distribution of \(\hat{\beta}_{PS} - \beta \)
when \(k \) is odd can be expressed in terms of the incomplete beta function

\[
G(z; k) = F_{z}^{r+1}(z) \sum_{s=0}^{r} \left(\frac{r + s}{r} \right) [1 - F_{z}(z)]^s
\]

\[
= \frac{\Gamma(k + 1)}{\Gamma^2(r + 1)} \int_0^{F_{z}(z)} t^r (1 - t)^s dt,
\]

(4)

\(^1\)See also the extensive bibliography on stable distributions compiled by J. P. Nolan, downloadable at
http://academic2.american.edu/~jpnolan.

\(^2\)The estimator \(\hat{\beta}_{PS} \) is incomplete in the sense that it uses \(k = \lfloor n/2 \rfloor \) differences, where \(\lfloor n/2 \rfloor \) represents the
integer part of \(n/2 \), instead of \(n(n - 1)/2 \) (cf. Sen, 1968b).
where $\Gamma(\cdot)$ is the gamma function, $F_z(\cdot)$ is the cdf of the z_i and $k = 2r + 1$. See, for example, David and Nagaraja (2003, p. 10). The incomplete beta function has been tabled extensively and can easily be evaluated using standard mathematical software packages such as MATHEMATICA and MATLAB. Another example of a MLBE that we will consider is

$$\hat{\beta}_{UF} = \text{med}\{ \frac{y_1 - \mu_y}{x_1 - \mu_x}, \frac{y_2 - \mu_y}{x_2 - \mu_x}, \ldots, \frac{y_n - \mu_y}{x_n - \mu_x} \},$$

where μ_y and μ_x are location parameters of the y_i and x_i, respectively. We shall sometimes refer to this estimator as unfeasible as it requires both μ_y and μ_x to be known, which for most cases will not be realistic (cf. the $b(\alpha)$ estimators of Blattberg and Sargent, 1971).

Now consider any estimator $\hat{\beta}$ for β that can be decomposed into $\hat{\beta} = \beta + \text{med}\{z_1, z_2, \ldots, z_k\}$, where the z_i are i.i.d. continuous random variables with zero median and k is odd. Then, in view of (4), it is readily shown that the median of $\hat{\beta} - \beta$ also is zero. Hence, $\hat{\beta}$ is a median-unbiased estimator for β. If, in addition, the density of the z_i is symmetric about zero, then so is that of $\hat{\beta} - \beta$.\footnote{The corresponding expression when k is even is}

$$G(z; k) = \frac{2\Gamma(k)}{\Gamma^2(r)} \int_{-\infty}^{z} F_x^{-1}(t)\{[1 - F_z(t)]^r - [1 - F_z(2z - t)]^r\} f_z(t)dt,$$

where $f_z(\cdot)$ is the pdf of the z_i and $k = 2r$ (Desu and Rodine, 1969).

The remainder of this note is organized as follows. In Section 2 we establish the consistency and exact finite-sample distributions of the MLBEs given by equations (3) and (5) in a symmetric stable regression. In doing so, we give conditions under which the median of the ratio of two independent symmetric stable random variables is unique (in general, the median may be an interval instead of a single number), then the sample median is a consistent estimator for the population median (e.g. Jiang, 2010, p. 5) and $\hat{\beta}$ converges in probability to β as k tends to infinity. Of course, as an alternative to the sample median, one could instead use a symmetrically trimmed mean in equations (3) and (5), cf. Section 5. Such an estimator could potentially have a higher asymptotic relative efficiency (ARE), see Oosterhoff (1994). The main focus of this note is to establish different conditions under which (3) and (5) are consistent, median-unbiased estimators with exact distributions that can be expressed in terms of (4), and exact densities that are symmetric about β.

The remainder of this note is organized as follows. In Section 2 we establish the consistency and exact finite-sample distributions of the MLBEs given by equations (3) and (5) in a symmetric stable regression. In doing so, we give conditions under which the median of the ratio of two independent symmetric stable random variables is unique and zero. In Section 3 we discuss how our results can be extended to include other types of regressions, with potentially contaminated errors. In Section 4 we illustrate how these results can be further extended to include certain types of conditionally heteroskedastic regressions. Section 5 reports the simulation results of a Monte Carlo study comparing the finite-sample performance of the MLBEs to each other, and to the LSE. In this study, we also consider feasible versions of (5). Section 6 concludes. Mathematical proofs are collected in the Appendix. An extended Appendix available on request from the authors contains some results mentioned in the text but omitted from the note to save space.

2. A Symmetric Stable Regression

We shall initially assume that both the explanatory variable and error in (1) are symmetric stable random variables with common index of stability. This ensures that also the response variable is symmetric stable. More specifically, for this specification both the unconditional and the (on x_i) conditional distribution of y_i follow a symmetric stable distribution, such as the
normal or Cauchy distributions. As we shall see, although the conditional mean of \(y_i \) may not exist, the conditional median of \(y_i \) always exists for this specification.

The distribution of a stable random variable is described by four parameters, here denoted by \(a, b, c \) and \(d \). The parameter \(a \), the \textit{index of stability}, is confined to the interval \((0, 2]\). The \textit{skewness parameter} \(b \) is confined to \([-1, 1]\). The \textit{scale parameter} \(c > 0 \), and the \textit{location parameter} \(d \) can take on any real value. There exists a number of different parametrizations for symmetric stable distributions. Here we will use the \(S(a, b, c, d) \) parametrization in Definition 1.7 of Nolan (2013).

For the remainder of this section, we will focus our attention on the class of symmetric stable random variables. This class may be defined by the characteristic function,

\[
\varphi(t) = E(e^{itv}) = e^{-c|t|^a + idt},
\]

where \(t \) is a real number. A random variable \(v \) is \(S(a, 0, c, d) \) distributed if its characteristic function is given by \([6]\). While there is no general closed form expression for the density of a symmetric stable random variable, a great deal is known about their theoretical properties. Lemma 1 in the Appendix (given here without a proof) lists a selected few of these. The reader is referred to Nolan (2013), Nolan (2003) and Zolotarev (1986) for details.

There are only two known cases for which closed form expressions for the density of a \(S(a, 0, c, d) \) distributed random variable exists. These are the Gaussian \((a = 2)\) and Cauchy \((a = 1)\) densities, where the latter is given by

\[
\frac{1}{\pi c} \frac{c}{c^2 + (v - d)^2}, \quad -\infty < v < \infty.
\]

In general, all we have is integral representations of the density. Figure 1 shows the densities of four symmetric stable random variables with different indexes of stability.

\(^5 \)Figure 1 was generated using the MATLAB function \texttt{stblpdf} of M. Veillette, downloadable at \url{http://math.bu.edu/people/mveillet/research.html}.
To establish the median-unbiasedness, consistency and finite-sample distributions of our MLBEs for the slope parameter in a symmetric stable regression, we make the following assumption.

Assumption 1. Let \(y_i \ (i = 1, 2, \ldots, n) \) be given by (\[\]), with median \(\mu_y \). Suppose that

(i) the \(x_i \) are independent \(S(a, 0, c_x, \mu_x) \),
(ii) the \(u_i \) are independent \(S(a, 0, c_u, 0) \),
(iii) \(x_i \) and \(u_j \) are independent for each \(i \) and \(j \),
(iv) the sample size is odd, \(n = 2k + 1 \).

Here \(a < 2 \) is a typical setting in which the, on the explanatory variable, conditional mean and variance of the LSE for \(\beta \) may not exist. For example, if \(a = 1 \) the conditional distribution of (\[\]) is Cauchy. With this assumption in place, we can prove the following proposition.

Proposition 1. Let \(G(\cdot) \) be given by (\[\]). Under Assumption (\[\]):

(i) \(\hat{\beta}_{UF} \stackrel{p}{\to} \beta \) as \(n \to \infty \) and the exact distribution of \(\hat{\beta} \) is given by \(P(\hat{\beta}_{UF} - \beta \leq z) = G(z; n) \), with

\[
F_z(z) = \int_{-\infty}^{c_x/c_u} \int_{-\infty}^{\infty} \frac{|t|f(s)f(t)|} {\pi} dt ds,
\]

where \(f(\cdot) \) is the density of a \(S(a, 0, 1, 0) \) distributed random variable. For each \(k \), the density of \(\hat{\beta}_{UF} - \beta \) is symmetric about zero.

(ii) If \(k = 2r + 1 \) is odd, \(\hat{\beta}_{PS} \stackrel{p}{\to} \beta \) as \(n \to \infty \) and the exact distribution of \(\hat{\beta} \) is given by \(P(\hat{\beta}_{PS} - \beta \leq z) = G(z; n) \), with \(F_z(z) \) as in (i). For each \(r \), the density of \(\hat{\beta}_{PS} - \beta \) is symmetric about zero.

Although there is no closed form expression for \(F_z(z) \) in Proposition (\[\]) in general, like the normal distribution, the cdf can be efficiently and accurately evaluated using numerical integration (Nolan, 1997). The values of \(a, c_x \) and \(c_u \) are not needed to estimate the slope parameter \(\beta \), but would be to construct confidence intervals. In practice, these nuisance parameters can be estimated using the explanatory variable and the residuals \(\varepsilon_i = y_i - \beta x_i \), where \(\varepsilon_i = \alpha + u_i \), and consistent estimators for the index of stability and scale parameters of a stable distribution. See Fama and Roll (1971), McCulloch (1986) and more recently Garcia, Renault and Veredas (2011) for examples of consistent estimators for stable distributions.

We end this section with two examples of \(F_z(z) \) in Proposition (\[\]). Table (\[\]) reports results for different symmetric stable ratio distributions. We consider Cauchy (\(a = 1 \)) and Gaussian (\(a = 2 \)) distributions for the error and explanatory variable. For the latter specification, \(F_z(z) \) is the cdf of a Cauchy distribution. Here the limiting distribution of \(\hat{\beta}_{UF} \) (and \(\hat{\beta}_{PS} \)) is normal. The asymptotic variance of the ordinary least squares (and maximum likelihood) estimator for \(\beta \) is \(\sigma_\varepsilon^2 / \sigma_x^2 \) whereas that of \(\hat{\beta}_{UF} \) is \((\pi/2)^2 \sigma_\varepsilon^2 / \sigma_x^2 \). Hence, the ARE of this MLBE with respect to the, asymptotically efficient, LSE is \((2/\pi)^2 \approx 0.405\) for the Gaussian specification. For the Cauchy specification, \(F_z(z) \) is an integral which, for computational purposes, can be expressed in terms of the polylogarithm (dilogarithm) function.

3. A Contaminated Normal Regression

So far we have restricted our analysis to symmetric stable random variables. In this section we outline how our results can be extended to include other types of regressions, with potentially

6 See Proposition 2 in the extended Appendix.
7 See Proposition 3 in the extended Appendix.
8 Cf. Proposition (\[\]) with \(p = 0 \).
Proposition 2. Let

With this assumption in place, we can prove the following proposition.

Assumption 2.

As an important special case, we derive the exact distributions of (3) and (5) in a contaminated normal regression.

The regression we consider is

\[
\begin{aligned}
y_i &= \alpha + \beta x_i + u_i \\
u_i &= (1 - b_i) v_i + b_i \sqrt{\gamma} v_i
\end{aligned}
\]

where \(x_i\) is normally distributed, \(b_i\) is Bernoulli distributed with success parameter \(p\), \(v_i\) is normally distributed with mean zero and variance \(\sigma^2\), \(\gamma > 1\), and \(x_i, b_i\) and \(v_i\) are mutually independent. For this specification,

\[
E(u_i) = 0, \quad E(u_i^2) = [1 + (\gamma - 1)p] \sigma^2,
\]

and the density of \(u_i\) is symmetric about zero. The contamination parameters \(p\) and \(\gamma\) are potentially unknown. Here a 'small' value of \(p\) and a 'large' value of \(\gamma\) is a typical setting in which the finite-sample performance of the LSE for \(\beta\) may be poor. For \(p = 0\) there is no contamination and (7) is a special case of (1), with \(x_i \sim \mathcal{S}(2, 0, \sigma_x/\sqrt{2}, \mu_x)\) and \(u_i \sim \mathcal{S}(2, 0, \sigma_v/\sqrt{2}, 0)\).

To establish the median-unbiasedness, consistency, finite-sample and limiting distributions of our MLBEs for the slope parameter in a contaminated normal regression, we make the following assumption.

Assumption 2. Let \(y_i (i = 1, 2, \ldots, n)\) be given by (7), with \(\mu_y = E(y_i)\). Suppose that

(i) the \(x_i\) are independent \(N(\mu_x, \sigma^2_x)\),
(ii) the \(b_i\) are independent Bernoulli distributed, with success parameter \(p\),
(iii) the \(v_i\) are independent \(N(0, \sigma^2_v)\) and \(\gamma > 1\),
(iv) \(x_i, b_i\) and \(v_i\) are independent for each \(i, j\) and \(l\),
(v) the sample size is odd, \(n = 2k + 1\).

With this assumption in place, we can prove the following proposition.

Proposition 2. Let \(G(\cdot)\) be given by (4). Under Assumption 2,

(i) \(\hat{\beta}_{UF} \overset{p}{\rightarrow} \beta\) as \(n \rightarrow \infty\) and the exact distribution of \(\hat{\beta}\) is given by \(P(\hat{\beta}_{UF} - \beta \leq z) = G(z; n)\), with

\[
F_r(z) = (1 - p) F_r(z) + p F_r(z/\sqrt{\gamma}), \quad F_r(z) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{\sigma_x}{\sigma_v} z \right).
\]

For each \(k\), the density of \(\hat{\beta}_{UF} - \beta\) is symmetric about zero. The limiting distribution of \(\hat{\beta}_{UF}\) is normal,

\[
\sqrt{n}(\hat{\beta}_{UF} - \beta) \overset{d}{\rightarrow} \mathcal{N}(0, [4 f_z^2(0)]^{-1}), \quad f_z(0) = \left[1 + \left(\frac{1 - \sqrt{\gamma}}{\sqrt{\gamma}} \right) p \right] \frac{\sigma_x}{\pi \sigma_v}.
\]
(ii) If \(k = 2r + 1 \) is odd, \(\hat{\beta}_{PS} \xrightarrow{p} \beta \) as \(n \to \infty \) and the exact distribution of \(\hat{\beta}_{PS} \) is given by

\[
P(\hat{\beta}_{PS} - \beta \leq z) = G(z; k),
\]

with

\[
F_z(z) = (1 - p)^2 F_r(z) + 2p(1 - p) F_r(\sqrt{2/((\gamma + 1)z)} + p^2 F_r(z/\sqrt{\gamma}),
\]

and \(F_r(z) \) as in (i). For each \(r \), the density of \(\beta_{PS} - \beta \) is symmetric about zero. The limiting distribution of \(\hat{\beta}_{PS} \) is normal,

\[
\sqrt{n}(\hat{\beta}_{PS} - \beta) \xrightarrow{d} N(0, [4f^2_z(0)]^{-1}), \quad f_z(0) = \left((1 - p)^2 + 2p(1 - p) \sqrt{\frac{2}{\gamma + 1}} + \frac{p^2}{\sqrt{\gamma}} \right) \frac{\sigma_z}{\pi \sigma_v}.
\]

By the proof of Proposition 2\(^9\) it is clear that similar results can be obtained for higher order mixtures and for a wide variety of cases where \(x_i \) and/or \(v_i \) are non-normally distributed, with finite first and second moments, and the density of \(v_i \) is symmetric about zero.

4. A Heteroskedastic Regression

In this section we illustrate how our results can be extended to include certain types of conditionally heteroskedastic regressions. The regression we consider is

\[
\left\{ \begin{array}{l}
y_i = \alpha + \beta x_i + u_i \\
u_i = \lambda(x_i)v_i
\end{array} \right.
\]

with e.g. \(\lambda(x) = (x - \mu_x)^2 \), \(\lambda(x) = |x - \mu_x| \) or \(\lambda(x) = 1 \). We shall assume that the \(x_i \) are i.i.d. and the distribution of the i.i.d. \(v_i \) is symmetric about zero. We shall also assume that \(x_i \) and \(v_j \) are independent for each \(i \) and \(j \). Under the assumptions of Lemma 2\(^\dagger\), this implies that the distribution of the i.i.d. \(u_i \) is also symmetric about zero.\(^9\) For ease of exposition, we consider \(\hat{\beta}_{UF} \) and note that similar results can be obtained for \(\beta_{PS} \). The case when \(\lambda(x) = |x - \mu_x| \) is special. Here \(\mu_y = \alpha + \beta \mu_x \), assuming all expectations exist, and the exact distribution of \(\hat{\beta}_{UF} \) when \(n \) is odd is given by \(P(\hat{\beta}_{UF} - \beta \leq z) = G(z; n) \) with \(F_z(z) = F_v(z) \), where \(F_v(\cdot) \) is the cdf of the \(v_i \).\(^\ddagger\) Hence, the distribution of \(\hat{\beta}_{UF} \) does not depend on the distribution of the \(x_i \). The consistency and asymptotic normality of \(\hat{\beta}_{UF} \) can be established under the usual assumptions for \(F_z(\cdot) \). For another example, suppose \(\lambda(x) = (x - \mu_x)^2 \) and the \(x_i \) and \(v_i \) are independent \(N(\mu_x, \sigma_x^2) \) and \(N(0, \sigma_v^2) \), respectively. In this case \(\hat{\beta}_{UF} \) consistently estimates \(\beta \) and \(F_z(z) \) can be expressed as an integral of a modified Bessel function of the second kind, multiplied by a normalizing constant. More specifically, the exact distribution of \(\hat{\beta}_{UF} \) when \(n \) is odd is given by \(P(\hat{\beta}_{UF} - \beta \leq z) = G(z; n) \) with \(F_z(z) = (\pi \sigma_x \sigma_v)^{-1} \int_{-\infty}^{z} K_0(t) (t/|\sigma_x \sigma_v|)^{-1} \, dt \), where \(K_0(\cdot) \) is the modified Bessel function of the second kind of order zero.\(^\ddagger\) The above results are summarized in Table 2\(^\ddagger\).

5. Simulation Study

In this section we report simulation results concerning the estimation of the slope parameter \(\beta = 3 \) in the regression \(y_i = 7 + 3x_i + u_i \) (\(i = 1, 2, \ldots, n \)). We consider sample sizes of \(n = 27, 55, 111, 223 \) and 447 to ensure that both \(n \) and \(\lfloor n/2 \rfloor \) are odd numbers, cf. assumptions \(^1\) and \(^2\) where \(\lfloor \cdot \rfloor \) is the integer part function. These sample sizes are used to illustrate the relation between \(k \) and \(r \) in propositions 1–2. We emphasize that the consistency of the estimators we consider does not rely on the values of \(n \) or \(k \), however, our exact distributional results in sections

\(^9\) Hence, if \(E(u_i) \) exists, \(E(u_i) = 0 \).
\(^\dagger\) See Proposition 5 in the extended Appendix.
\(^\ddagger\) See the proof of Proposition 2.
\(^\ddagger\) See Proposition 6 in the extended Appendix.
Table 2. Symmetric ratio distributions.

<table>
<thead>
<tr>
<th>Heteroskedasticity</th>
<th>Distribution</th>
<th>Distribution</th>
<th>Ratio Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda(x)$</td>
<td>x_i</td>
<td>v_i</td>
<td>$\hat{z}_i = \lambda(x)_i v_i / (x_i - \mu_x)$</td>
</tr>
<tr>
<td>$</td>
<td>x - \mu_x</td>
<td>$</td>
<td>Absolutely continuous, with finite mean μ_x</td>
</tr>
<tr>
<td>$(x - \mu_x)^2$</td>
<td>$\mathcal{N}(\mu_x, \sigma_x^2)$</td>
<td>$\mathcal{N}(0, \sigma_x^2)$</td>
<td>$F_\ell(z) = \frac{1}{\pi \sigma_x} K_0 \left(\frac{</td>
</tr>
</tbody>
</table>

2 through 4 do[13] Table 3 shows simulation results for various specifications of the explanatory variable and error. We report the empirical bias and mean squared error (MSE) of the estimators $\hat{\beta}_{UF}, \hat{\beta}_{FE}, \hat{\beta}_{PS}$ and $\hat{\beta}_{LS}$. The estimator $\hat{\beta}_{FE}$, described below, is a feasible version of $\hat{\beta}_{UF}$. Each table entry is based on 1,000,000 simulated samples. Symmetric stable pseudo-random numbers were generated using Theorem 1.19 (a) in Nolan (2013).

Symmetric Stable Regression. Panels A-D of Table 3 report simulation results when the x_i and u_i are i.i.d. $\mathcal{S}(a, 0, 1, 1)$ and $\mathcal{S}(a, 0, 1, 0)$, respectively, for $a = 1, 1.25, 1.5$ and 1.75. To estimate the location parameters μ_y and μ_x when constructing a feasible version of $\hat{\beta}_{UF}$ for the symmetric stable regression in Section 2 we use the symmetrically trimmed mean

$$\hat{\mu}_x = \frac{1}{[np_2] - [np_1]} \sum_{i=[np_1]+1}^{[np_2]} x(i),$$

with $p_1 = 0.25$ and $p_2 = 1 - p_1$. Here $x(1) \leq x(2) \leq \cdots \leq x(n)$ is the ordered sample of size n. The proportions p_1 and $1 - p_2$ represent the proportion of the sample trimmed at either ends. According to Fama and Roll (1968), the symmetrically trimmed mean performs very well over the entire range $1 \leq a \leq 2$ for this choice of p_1 and p_2. In all four experiments, the bias and MSE of $\hat{\beta}_{UF}$ and $\hat{\beta}_{FE}$ is reasonable. $\hat{\beta}_{PS}$ also performs reasonably well, but has a much larger MSE. As expected, the performance of $\hat{\beta}_{LS}$ is unacceptable for values of a close to 1.

Contaminated Normal Regression. Panels E-F of Table 3 report simulation results when the errors $u_i = (1 - b_1)v_i + b_1 \sqrt{\pi} v_i$ are contaminated normal. In these two experiments the x_i and v_i are i.i.d. $\mathcal{N}(1, 1)$ and $\mathcal{N}(0, 1)$, respectively, and the b_i are i.i.d. Bernoulli with success parameter $p = 0.05$ and 0.1. The contamination parameter $\gamma = 36$, implying that the error variance, given by (8), is 2.75 for $p = 0.05$ and 4.5 for $p = 0.1$. To estimate μ_y and μ_x when constructing a feasible version of $\hat{\beta}_{UF}$ for the contaminated normal regression in Section 3 we use the sample mean, $\hat{\mu}_x = n^{-1} \sum_{i=1}^n x_i$. In both experiments, the results indicate that the MSE of $\hat{\beta}_{UF}$ and $\hat{\beta}_{FE}$ is considerably smaller than that of $\hat{\beta}_{LS}$. However, the MSE of $\hat{\beta}_{PS}$ is considerably higher than that of the LSE.

Heteroskedastic Regression. Finally, panels G-H of Table 3 report simulation results when the errors $u_i = \lambda(x_i)v_i$ are conditionally heteroskedastic. We consider the last example of Section 4, where $\lambda(x) = (x - \mu_x)^2$, when the x_i and v_i are i.i.d. $\mathcal{N}(1, \sigma_x^2)$ and $\mathcal{N}(0, 1)$, respectively, for $\sigma_x^2 = 1$ and 2. To estimate μ_y and μ_x when constructing a feasible version of $\hat{\beta}_{UF}$ we use the

[13] The former statement is also supported by a simulation study reported in Table 1 of the extended Appendix, which shows that the decreasing trend of the MSE for $\hat{\beta}_{PS}$ and $\hat{\beta}_{UF}$ observed in Table 3 is maintained when n and k are even numbers.
Table 3. Each table entry, based on 1,000,000 simulated samples, reports the empirical bias/mean squared error of different estimators for the slope parameter $\beta = 3$ in the simple linear regression $y_i = 7 + 3x_i + u_i$. The following estimators are considered: The unfeasible (UF), feasible (FE), incomplete pairwise slope (PS) and ordinary least squares (LS) estimator. Panels A-D: $x_i \sim \mathcal{N}$(1, 1) and $u_i \sim \mathcal{S}(a, 0, 1.1)$ (Symmetric Stable Regression). Panels E-F: $x_i \sim \mathcal{N}'$(1, 1) and $u_i = (1 - b_i)v_i + b_i\sqrt{36v_i}$, where b_i is Bernoulli with success parameter p and $v_i \sim \mathcal{N}$'$(0, 1)$ (Contaminated Normal Regression). Panels G-H: $x_i \sim \mathcal{N}(1, \sigma_i^2)$ and $u_i = (x_i - 1)^2v_i$, where $v_i \sim \mathcal{N}(0, 1)$ (Heteroskedastic Normal Regression). Different sample sizes (n), indices of stability (a), success parameters (p) and regressor variances (σ_i^2) are considered.

<table>
<thead>
<tr>
<th>Panel</th>
<th>n</th>
<th>$\hat{\beta}_{UF}$ Bias</th>
<th>$\hat{\beta}_{FE}$ MSE</th>
<th>$\hat{\beta}_{PS}$ Bias</th>
<th>$\hat{\beta}_{LS}$ Bias</th>
<th>$\hat{\beta}_{UF}$ MSE</th>
<th>$\hat{\beta}_{FE}$ MSE</th>
<th>$\hat{\beta}_{PS}$ MSE</th>
<th>$\hat{\beta}_{LS}$ MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>27</td>
<td>0.000 0.055</td>
<td>-0.008 0.093</td>
<td>0.000 0.237</td>
<td>0.987 1.276x10^6</td>
<td>0.006 0.126</td>
<td>0.004 0.147</td>
<td>0.000 0.391</td>
<td>-0.001 0.193</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>0.000 0.016</td>
<td>-0.004 0.022</td>
<td>0.000 0.055</td>
<td>0.022 1.315x10^3</td>
<td>0.006 0.057</td>
<td>0.005 0.061</td>
<td>0.001 0.149</td>
<td>0.000 0.089</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>0.000 0.006</td>
<td>-0.002 0.007</td>
<td>0.000 0.016</td>
<td>-0.019 1.060x10^3</td>
<td>0.007 0.027</td>
<td>0.007 0.028</td>
<td>0.004 0.067</td>
<td>0.004 0.043</td>
</tr>
<tr>
<td></td>
<td>223</td>
<td>0.000 0.002</td>
<td>-0.001 0.002</td>
<td>0.000 0.006</td>
<td>1.077 1.374x10^6</td>
<td>0.003 0.013</td>
<td>0.003 0.014</td>
<td>0.001 0.032</td>
<td>0.002 0.021</td>
</tr>
<tr>
<td></td>
<td>447</td>
<td>0.000 0.001</td>
<td>-0.000 0.001</td>
<td>0.000 0.002</td>
<td>0.028 8.089x10^3</td>
<td>0.002 0.007</td>
<td>0.002 0.007</td>
<td>0.001 0.015</td>
<td>0.001 0.010</td>
</tr>
<tr>
<td>B</td>
<td>27</td>
<td>0.000 0.069</td>
<td>-0.012 0.089</td>
<td>0.000 0.230</td>
<td>0.023 8.684x10^2</td>
<td>0.006 0.157</td>
<td>0.005 0.213</td>
<td>0.001 0.635</td>
<td>-0.002 0.354</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>0.000 0.025</td>
<td>-0.005 0.029</td>
<td>0.000 0.069</td>
<td>0.002 9.824</td>
<td>0.007 0.070</td>
<td>0.006 0.079</td>
<td>0.002 0.222</td>
<td>0.001 0.163</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>0.000 0.010</td>
<td>-0.002 0.011</td>
<td>0.000 0.025</td>
<td>-0.002 1.503x10^3</td>
<td>0.008 0.033</td>
<td>0.007 0.035</td>
<td>0.004 0.095</td>
<td>0.005 0.079</td>
</tr>
<tr>
<td></td>
<td>223</td>
<td>0.000 0.004</td>
<td>-0.001 0.004</td>
<td>0.000 0.010</td>
<td>0.015 4.889x10^2</td>
<td>0.004 0.016</td>
<td>0.003 0.017</td>
<td>0.002 0.044</td>
<td>0.002 0.039</td>
</tr>
<tr>
<td></td>
<td>447</td>
<td>0.000 0.002</td>
<td>-0.001 0.002</td>
<td>0.000 0.004</td>
<td>0.002 6.390</td>
<td>0.002 0.008</td>
<td>0.002 0.008</td>
<td>0.001 0.021</td>
<td>0.001 0.019</td>
</tr>
<tr>
<td>C</td>
<td>27</td>
<td>0.000 0.082</td>
<td>-0.011 0.095</td>
<td>0.000 0.233</td>
<td>0.001 4.986</td>
<td>0.003 0.010</td>
<td>0.000 0.144</td>
<td>0.001 0.127</td>
<td>-0.008 0.455</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>0.000 0.033</td>
<td>-0.005 0.036</td>
<td>0.000 0.081</td>
<td>0.001 0.540</td>
<td>0.002 0.004</td>
<td>0.002 0.056</td>
<td>0.003 0.050</td>
<td>-0.005 0.246</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>0.000 0.014</td>
<td>-0.002 0.015</td>
<td>0.000 0.033</td>
<td>-0.000 0.520</td>
<td>0.002 0.001</td>
<td>0.004 0.022</td>
<td>0.004 0.022</td>
<td>0.003 0.128</td>
</tr>
<tr>
<td></td>
<td>223</td>
<td>0.000 0.007</td>
<td>-0.001 0.007</td>
<td>0.000 0.014</td>
<td>0.001 2.006</td>
<td>0.001 0.001</td>
<td>0.002 0.009</td>
<td>0.002 0.010</td>
<td>0.001 0.066</td>
</tr>
<tr>
<td></td>
<td>447</td>
<td>0.000 0.003</td>
<td>-0.001 0.003</td>
<td>0.000 0.007</td>
<td>0.000 0.134</td>
<td>0.000 0.000</td>
<td>0.001 0.004</td>
<td>0.001 0.005</td>
<td>0.001 0.033</td>
</tr>
<tr>
<td>D</td>
<td>27</td>
<td>0.000 0.093</td>
<td>-0.009 0.103</td>
<td>-0.000 0.239</td>
<td>0.000 0.219</td>
<td>0.004 0.020</td>
<td>0.001 0.289</td>
<td>0.002 0.254</td>
<td>-0.011 0.910</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>0.000 0.041</td>
<td>-0.004 0.043</td>
<td>-0.000 0.093</td>
<td>0.000 0.082</td>
<td>0.005 0.007</td>
<td>0.003 0.113</td>
<td>0.004 0.101</td>
<td>-0.007 0.492</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>0.000 0.019</td>
<td>-0.002 0.019</td>
<td>0.000 0.041</td>
<td>0.000 0.044</td>
<td>0.003 0.003</td>
<td>0.005 0.045</td>
<td>0.005 0.044</td>
<td>0.004 0.257</td>
</tr>
<tr>
<td></td>
<td>223</td>
<td>0.000 0.009</td>
<td>-0.001 0.009</td>
<td>0.000 0.019</td>
<td>0.000 0.040</td>
<td>0.001 0.001</td>
<td>0.002 0.018</td>
<td>0.002 0.020</td>
<td>0.002 0.131</td>
</tr>
<tr>
<td></td>
<td>447</td>
<td>0.000 0.004</td>
<td>-0.001 0.004</td>
<td>0.000 0.001</td>
<td>0.000 0.010</td>
<td>0.001 0.001</td>
<td>0.001 0.007</td>
<td>0.001 0.009</td>
<td>0.001 0.066</td>
</tr>
</tbody>
</table>
sample mean. In general, the bias of the MLBEs is similar in magnitude to that of the LSE, however, the MLBEs appear to have a much smaller MSE.

6. CONCLUSIONS AND EXTENSIONS

In this note we have established the consistency and exact finite-sample distributions of two median-unbiased MLBEs for the slope parameter in a simple linear regression model when (1) the explanatory variable and error are symmetric stable random variables, and (2) the explanatory variable is normal and the error is contaminated normal. These exact distributions may be used for statistical inference. In addition, we have illustrated how our results can be extended to include certain heteroskedastic regressions. Our simulation study indicated that the MLBEs can have superior finite-sample properties compared to the LSE.

Because of their robustness and ease of computation, along the lines of Hinich and Talwar (1975), \(\hat{\beta}_{PS} \) or \(\hat{\beta}_{FE} \) can also be used as a starting point for a more sophisticated method. For example, in the context of numerical maximum likelihood estimation in a symmetric stable linear regression, to search for a global optimum, \(\hat{\beta}_{PS} \) (or \(\hat{\beta}_{FE} \)) could be used as a easily computable starting point for the numerical method. A well chosen starting point may lead to a drastic decrease in computational time. Kadiyala and Murthy (1977), for example, use \(\hat{\beta}_{LS} \) as a starting point. In light of our simulation results, this is a poor choice.

The exact distributional results in this note are based on the assumption that the sample size \(n \) and \(k = \lfloor n/2 \rfloor \) are odd numbers, however, the consistency of the MLBEs does not rely on whether \(n \) and \(k \) are even or odd. Analogous exact distributional results for the case when \(n \) and \(k \) are even numbers can be obtained using Equation (2.1) in Desu and Rodine (1969).

We have aimed for clarity at the expense of generality. For example, results analogous to those of Proposition 1 can be obtained for MLBEs of the slope parameters in a general, symmetric stable, linear regression with two or more statistically independent explanatory variables. For another example, it appears that our results can be extended to allow for serially correlated errors using existing results for \(m \)-dependent samples (e.g. Sen, 1968a). Finally, results analogous to those of propositions 1 and 2 can be obtained for a simple unit root process, \(y_t = y_{t-1} + u_t \), with symmetric stable or contaminated normal errors. This is work in progress.

REFERENCES

14In view of Lemma 1, a starting point for \(\alpha \) (the regression intercept) given a sample of size \(n = 2k + 1 \) could then be \(\hat{\alpha}_{PS} = y_{(k+1)} - \hat{\beta}_{PS} x_{(k+1)} \). More generally, \(\alpha \) can be estimated by the sample median of the PS residuals \(\hat{\epsilon}_i = y_i - \hat{\beta}_{PS} x_i \) (cf. Hettmansperger, McKean and Sheather, 1997).

15Maximum likelihood estimation of the general linear regression model with symmetric stable errors has been considered by Kadiyala and Murthy (1977), Barmi and Nelson (1997) and Nolan and Ojeda-Revah (2013), among others. In most cases there is no closed form expression for the MLE (McCulloch, 1998). The maximization of the likelihood function then imposes a high computational burden even for small to moderate sample sizes.

16See Proposition 7 in the extended Appendix.

17A sequence \(\{u_1, u_2, \ldots \} \) of random variables is said to be \(m \)-dependent if and only if \(u_i \) and \(u_{i+k} \) are pairwise independent for all \(k > m \). In the special case when \(m = 0 \), \(m \)-dependence reduces to independence.

APPENDIX

The following lemmas are applied in the proof of Propositions 1–2.

Lemma 1 (Properties of Symmetric Stable Variates). If \(v \sim S(a, 0, c_v, d_v) \) and \(w \sim S(a, 0, c_w, d_w) \) are independent, then

(i) \(v \) is absolutely continuous, with a continuous and unimodal density,
(ii) the density of \(v \) is symmetric about \(d_v \), and the support of \(v \) is \((-\infty, \infty)\),
(iii) if \(1 < a \leq 2 \), the mean of \(v \) is finite and equal to \(d_v \),
(iv) if \(0 < a < 2 \), the variance of \(v \) does not exist,
(v) for any \(\alpha \neq 0 \) and real \(\beta, \alpha + \beta v \sim S(a, 0, |\beta|c_v, \alpha + \beta d_v) \),
(vi) \(v + w \sim S(a, 0, c, d_v + d_w) \), where \(c^a = c_v^a + c_w^a \).

Lemma 2 (Symmetric Product and Ratio Distributions). Suppose \(v \) and \(w \) are two independent absolutely continuous random variables, and \(v \) is symmetrically distributed about zero. Then, the product \(p = vw \) and ratio \(r = v/w \) are absolutely continuous and symmetrically distributed about zero, with pdf's

\[
f_p(p) = \int_{-\infty}^{\infty} \frac{1}{|t|} f_v(p/t) f_w(t) dt \quad \text{and} \quad f_r(r) = \int_{-\infty}^{\infty} |t| f_v(rt) f_w(t) dt,
\]

where \(f_v(\cdot) \) and \(f_w(\cdot) \) are the pdf's of \(v \) and \(w \), respectively.

Proof. By theorems 3.1 and 7.1 in Curtiss (1941), the cdf's of \(p \) and \(r \) are absolutely continuous. Moreover, the pdf's of \(p \) and \(r \) exist almost everywhere and are given by (10). Since \(v \) is symmetrically distributed about zero, \(f_v(s) = f_v(-s) \) for all real \(s \). The result now follows by noting that \(f_p(p) = f_p(-p) \) and \(f_r(r) = f_r(-r) \) for all real \(p \) and \(r \). \(\square \)

Lemma 3 (Uniqueness of the Median of a Ratio of Symmetric Stable Variates). Suppose that \(v \sim S(a, 0, 1, 0) \) and \(w \sim S(a, 0, 1, 0) \) are independent, then the median of \(r = v/w \) is unique and zero.

Proof. Let \(\epsilon > 0 \) be arbitrary. By Lemma 2, the density of \(r \) is symmetric about zero. Hence, to show that the median is not an interval, it is enough to show that

\[
\int_0^\epsilon f_r(t) dt = F_r(\epsilon) - F_r(0) = F_r(\epsilon) - \frac{1}{2} > 0.
\]

For \(a = 2 \) the ratio is standard Cauchy, hence, \(F_r(\epsilon) - \frac{1}{2} = \frac{1}{\pi} \arctan(\epsilon) > 0 \). For \(0 < a < 2 \) Theorem 1 in Sheolnick (1985) gives

\[
r \overset{d}{=} xy, \quad y = \left[\frac{\sin \left(\frac{\pi a}{2} z \right)}{\sin \left(\frac{\pi a}{2} (1 - z) \right)} \right]^{\frac{1}{a}}
\]

where \(x \sim S(1, 0, 1, 0) \) and \(y \) are independent, \(\overset{d}{=} \) denotes equality in distribution, and \(z \) is uniformly distributed on \((0, 1)\). Hence,

\[
P(0 < r < \epsilon) = P(0 < xy < \epsilon) \geq P(0 < x \epsilon, 0 < y < 1) = P(0 < x \epsilon)P(0 < y < 1).
\]

As \(x \) is standard Cauchy, \(P(0 < x \epsilon) = \frac{1}{\pi} \arctan(\epsilon) \). Next we show that \(P(0 < y < 1) = 1/2 \).

Since \(P(0 < z < 1) = 1 \), we only consider solutions \(0 < z < 1 \) to \(0 < y(z) < 1 \). For this subset, \(0 < y < 1 \) if and only if

\[
\sin \left(\frac{\pi a}{2} (1 - z) \right) - \sin \left(\frac{\pi a}{2} z \right) = 2 \cos \left(\frac{\pi a}{4} \right) \sin \left(\frac{\pi a}{4} - \frac{\pi a}{2} z \right) > 0.
\]

It follows that \(P(0 < y < 1) = P(0 < z < 1/2) = 1/2 \). Thus,

\[
F_r(\epsilon) - \frac{1}{2} = P(0 < r < \epsilon) \geq \frac{1}{2\pi} \arctan(\epsilon) > 0.
\]

\(\square \)

Lemma 4 (Symmetric Ratio Mixture Distribution). Suppose that

\[
z = (1 - b) \frac{v}{w} + b \sqrt{\gamma} \frac{v}{w},
\]

where \(b \) is Bernoulli distributed with success parameter \(p \), \(v \) and \(w \) are independent absolutely continuous random variables, \(v \) is symmetrically distributed about zero and \(\gamma > 0 \). Then the ratio mixture \(z \) is absolutely continuous and symmetrically distributed about zero, with pdf

\[
f_z(z) = (1 - p)f_r(z) + p(1/\sqrt{\gamma}) f_r(z/\sqrt{\gamma}),
\]
where \(f_r(\cdot) \) is the ratio density of Lemma \[2\]

Proof.

\[
\begin{align*}
 f_z(z) &= \sum_{k=0}^{1} f_{z,b}(z,k) = \sum_{k=0}^{1} (1-p)^{1-k} p^k f_{z|b=k}(z) \\
 &= (1-p)f_r(z) + p(1/\sqrt{\gamma}) f_r(z/\sqrt{\gamma}),
\end{align*}
\]

where we have used Lemma \[2\] and that the pdf of \(h = \sqrt{\gamma}v \) is \((1/\sqrt{\gamma}) f_v(h/\sqrt{\gamma})\), which is symmetric about zero. Since \(f_r(r) = f_r(-r) \) for all real \(r \), the result now follows by noting that \(f_z(z) = f_z(-z) \) for all real \(z \).

Proof of Proposition \[1\]. First we will show that

\[
 z_i = \frac{y_{2i} - y_{2i-1}}{x_{2i} - x_{2i-1}} - \beta = \frac{y_i - \mu_y}{x_i - \mu_x} - \beta = \frac{y_i - \mu_y}{x_i - \mu_x} - \beta = \frac{y_i - \mu_y}{x_i - \mu_x}.
\]

where \(r_i \) is the ratio of two independent \(S(a,0,1,0) \) random variables. Since \(\mu_y = \alpha + \beta \mu_x \), we have

\[
 \frac{y_i - \mu_y}{x_i - \mu_x} = \frac{\beta(x_i - \mu_x) + u_i}{x_i - \mu_x} = \beta + \frac{u_i}{x_i - \mu_x}.
\]

In view of Lemma \[1\]

\[
 \frac{u_i}{x_i - \mu_x} = \frac{v_i}{w_i} = \frac{c_x}{c_y} r_i,
\]

where \(v_i \) and \(w_i \) are independent \(S(a,0,c_u,0) \) and \(S(a,0,c_x,0) \) variates, respectively. Similarly,

\[
 \frac{y_{2i} - y_{2i-1}}{x_{2i} - x_{2i-1}} = \frac{\beta + \frac{u_{2i} - u_{2i-1}}{x_{2i} - x_{2i-1}}}{x_i - \mu_x}.
\]

where

\[
 \frac{u_{2i} - u_{2i-1}}{x_{2i} - x_{2i-1}} = \frac{v_i}{w_i} = \frac{c_x}{c_y} r_i,
\]

and \(v_i \) and \(w_i \) are independent \(S(a,0,2^{1/a}c_u,0) \) and \(S(a,0,2^{1/a}c_x,0) \) variates, respectively. This shows \([1]\). By Lemma \[2\] the pdf of \(r_i \) is symmetric about zero and the cdf of \(r_i \) is given by

\[
 F_r(r) = \int_{-\infty}^{r} \int_{-\infty}^{\infty} |t| f(st)f(t) dt ds,
\]

where \(f(\cdot) \) is the pdf of a \(S(a,0,1,0) \) variate. Hence, the density of \(z_i \) is symmetric about zero and the distribution of \(z_i \) is given by

\[
 F_z(z) = F_r(c_x z/c_u) = \int_{-\infty}^{(c_x/c_u)z} \int_{-\infty}^{\infty} |t| f(st)f(t) dt ds.
\]

It follows that \(P(\beta_{PS} - \beta \leq z) = P(z_{(r+1)} \leq z) \), where \(k = 2r + 1 \) and \(z_{(r+1)} \) is the sample median of the i.i.d. sequence \(\{z_1, z_2, \ldots, z_k\} \). Standard results for order statistics give us the exact distribution of \(z_{(r+1)} \) in terms of \(F_z(z) \). The consistency of \(\hat{\beta}_{PS} \) follows from Lemma \[3\].

This proves \((ii)\). The proof of \((i)\) is analogous.
Proof of Proposition 2. Since $\mu_y = \alpha + \beta \mu_x$, we have
\[
y_i - \mu_y = \frac{\beta (x_i - \mu_x) + u_i}{x_i - \mu_x} = \beta + z_i,
\]
where
\[
\begin{align*}
z_i &= (1 - b_i) r_i + b_i \sqrt{\gamma} r_i,
\end{align*}
\]
and $r_i = v_i / (x_i - \mu_x)$. It follows that $P(\hat{\beta}_{UF} - \beta \leq z) = P(z_{(k+1)} \leq z)$, where $n = 2k + 1$ and $z_{(k+1)}$ is the sample median of the i.i.d. sequence $\{z_1, z_2, \ldots, z_n\}$. By Lemma 1 the pdf of z_i is symmetric about zero, and the cdf of z_i is given by
\[
F_z(z) = \int_{-\infty}^{z} f_z(t)dt = (1 - p)F_r(z) + pF_r(z/\sqrt{\gamma}),
\]
where $F_r(\cdot)$, the cdf of r_i, can be obtained using Lemma 2. For the particular case when both x_i and v_i are assumed to be normal, r_i is $\mathcal{N}(1, 0, \sigma_v/\sigma_x, 0)$ distributed, with
\[
F_r(z) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{\sigma_x}{\sigma_v} z \right).
\]
Hence, since F_z is strictly increasing, the unique solution to $F_z(\xi) = 1/2$ is $\xi = 0$. Standard results for order statistics gives us the exact distribution of $z_{(k+1)}$ in terms of $F_z(z)$. This proves the first part of (i). For the second part, note that the continuous pdf $f_z(z)$ of z_i is given by
\[
F'_z(z) = \frac{(1 - p)}{\pi} \frac{\sigma_v}{\sigma_x} \frac{1}{(\sigma_x/\sigma_v)^2 + z^2} + p \frac{1}{\pi} \frac{\sqrt{\gamma} \sigma_v}{\sigma_x} \frac{1}{(\sqrt{\gamma} \sigma_x)^2 + z^2},
\]
with
\[
f_z(0) = \left[1 + \left(\frac{1 - \sqrt{\gamma}}{\sqrt{\gamma}} \right) p \right] \frac{\sigma_x}{\pi \sigma_v}.
\]
Since also the derivative of $f_z(z)$ is continuous, standard results (Cramér, 1946, p. 369) gives us the limiting distribution in terms of $f_z(0)$,
\[
\sqrt{n}(\hat{\beta}_{UF} - \beta) = \sqrt{n} z_{(k+1)} \xrightarrow{d} \mathcal{N}(0, [4F_z^2(0)]^{-1}).
\]
This proves the second part of (i). The proof of (ii) is analogous. □

\[\text{See Proposition 4 in the extended Appendix.}\]
EXTENDED APPENDIX TO
“MEASURE OF LOCATION-BASED ESTIMATORS
IN SIMPLE LINEAR REGRESSION”
August 15, 2013

XIJIA LIU† AND DANIEL PREVE‡

Abstract. This extended Appendix provides a technical supplement with supporting results and proofs to complement the original note.

EXTENDED APPENDIX

Proposition 1. Suppose that the estimator \(\hat{\beta} \) for \(\beta \) can be decomposed into \(\hat{\beta} = \beta + \text{med}\{z_1, z_2, \ldots, z_k\} \), where the \(z_i \) are i.i.d. continuous random variables with zero median. Then,

(i) the median of \(\hat{\beta} - \beta \) is zero (i.e. \(\hat{\beta} \) is median-unbiased) and
(ii) if, in addition, the density of \(z_i \) is symmetric about zero, then so is the density of \(\hat{\beta} - \beta \).

Proof. Let \(C = \Gamma(k+1)/\Gamma^2(r+1) \). Then, in view of (4), since \(F_z(0) = 1/2 \)
\[
G(0; k) = C \int_0^{1/2} t^r (1-t)^r dt = C \int_0^{1/2} (1-s)^r s^r ds = C \int_1^1 s^r (1-s)^r ds.
\]

Seeing that the sum of the first and last integral is one, it follows that \(G(0; k) = 1/2 \). This proves (i). For the proof of (ii), note that \(F_z(z) = 1 - F_z(-z) \) as the density of \(z_i \) is symmetric about zero. Hence,
\[
G(z; k) = C \int_0^{F_z(z)} t^r (1-t)^r dt = C \int_0^{1-F_z(-z)} t^r (1-t)^r dt = C \int_1^{F_z(-z)} (1-s)^r s^r ds
\]
\[
= C \int_{F_z(-z)}^1 s^r (1-s)^r ds = 1 - C \int_0^{F_z(-z)} s^r (1-s)^r ds = 1 - G(-z; k).
\]

This proves (ii).

Proposition 2. Under Assumption 1: (i) the conditional distribution of \(\hat{\beta}_{LS} \) is symmetric stable with index of stability \(a \), (ii) the conditional mean of \(\hat{\beta}_{LS} \) does not exist if \(0 < a \leq 1 \), and (iii) the conditional variance of \(\hat{\beta}_{LS} \) does not exist if \(0 < a < 2 \).

Proof. By (2), the LSE for \(\beta \) can be decomposed into
\[
\hat{\beta}_{LS} = \beta + \frac{\sum_{i=1}^n (x_i - \bar{x})(u_i - \bar{u})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \beta + (c_1 - \bar{c})u_1 + (c_2 - \bar{c})u_2 + \cdots + (c_n - \bar{c})u_n,
\]
where
\[
c_i = \frac{x_i - \bar{x}}{\sum_{i=1}^n (x_i - \bar{x})^2}.
\]

† Uppsala University. ‡ City University of Hong Kong. Address correspondence to Xijia Liu, Department of Statistics, Uppsala University, Box 513, 751 20 Uppsala, Sweden; e-mail: xijia_liu@statistics.uu.se.
Hence, conditional on the \(x_i \), \(\hat{\beta}_{LS} - \beta \) is a linear combination of independent, identically \(S(a, 0, c_u, 0) \) distributed random variables which, in view of Lemma 1, is symmetric stable with index of stability \(a \). This proves (i). Standard results for stable distributions (Nolan, 2013, p. 15) show (ii) and (iii).

Proposition 3. Under Assumption 1, \(F_z(z) \) in Proposition 1 is given by

\[
F_z(z) = \frac{1}{\pi^2} \int_{-\infty}^{\infty} \frac{\ln(t^2)}{t^2-1} dt, \quad \text{if } a = 1, \quad \text{and} \quad F_z(z) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{\sigma_x}{\sigma_u} z \right), \quad \text{if } a = 2.
\]

Proof. Since \(S(2, 0, \sigma/\sqrt{2}, \mu) = \mathcal{N}(\mu, \sigma^2) \), we have

\[
\frac{u_i}{x_i - \mu_x} = \frac{d}{\sigma_x} r_i,
\]

where \(r_i \) is the ratio of two independent \(\mathcal{N}(0, 1) \) random variables. Hence, \(r_i \) is \(\mathcal{C}(0, 1) \) where \(\mathcal{C}(0, 1) \) denotes the standard Cauchy distribution. Similarly,

\[
\frac{u_{2i} - u_{2i-1}}{x_{2i} - x_{2i-1}} = \frac{d}{\sigma_x} r_i,
\]

where \(v_i \) and \(w_i \) are independent \(\mathcal{N}(0, 2\sigma_u^2) \) and \(\mathcal{N}(0, 2\sigma_x^2) \) variates, respectively. As the cdf of a standard Cauchy variate is \(\frac{1}{2} + \frac{1}{\pi} \arctan(z) \), the results on the second row in Table 1 now follow. To show the results on the first row, note that \(S(1, 0, c, \mu) = \mathcal{C}(\mu, c) \). In view of Lemma 1,

\[
\frac{u_i}{x_i - \mu_x} = \frac{d}{\sigma_x} \frac{c_u}{c_x} r_i,
\]

where \(v_i \) and \(w_i \) are independent \(\mathcal{C}(0, c_u) \) and \(\mathcal{C}(0, c_x) \) variates, respectively, and \(r_i \) is the ratio of two independent \(\mathcal{C}(0, 1) \) random variables. Similarly,

\[
\frac{u_{2i} - u_{2i-1}}{x_{2i} - x_{2i-1}} = \frac{d}{\sigma_x} \frac{c_u}{c_x} r_i,
\]

where \(v_i \) and \(w_i \) here are independent \(\mathcal{C}(0, 2c_u) \) and \(\mathcal{C}(0, 2c_x) \) variates, respectively. By Theorem 3.1 in (Curtiss, 1941), the density of the ratio of two independent standard Cauchy variates exists almost everywhere and is given by

\[
f_r(r) = \int_{-\infty}^{\infty} |t| \left(\frac{1}{\pi} \frac{1}{1 + (rt)^2} \right) \left(\frac{1}{\pi} \frac{1}{1 + t^2} \right) dt = \frac{1}{\pi^2} \int_{0}^{\infty} \frac{2t}{(1 + r^2t^2)(1 + t^2)} dt
\]

\[
= \frac{1}{\pi^2} \int_{0}^{\infty} \frac{1}{(1 + r^2s)(1 + s)} ds.
\]

It is readily seen that \(f_r(r) \) is equal to \(1/\pi^2 \) for \(r = \pm 1 \), and is divergent for \(r = 0 \). For \(r \neq \pm 1 \) partial fraction decomposition yields,

\[
f_r(r) = \frac{1}{\pi^2} \int_{0}^{\infty} \frac{1}{(1 + r^2s)(1 + s)} ds = \frac{1}{\pi^2} \int_{0}^{\infty} \left(\frac{r^2}{r^2+1} \right) \frac{ds}{1 + r^2s} - \left(\frac{1}{r^2+1} \right) ds
\]

\[
= \lim_{t \to \infty} \frac{1}{\pi^2} \left(\frac{1}{r^2-1} \right) \ln \left(\frac{1 + r^2t}{1 + t} \right) = \frac{1}{\pi^2} \ln(r^2 - 1)
\]

A closer analysis shows that \(f_r(r) \) is continuous at \(r = \pm 1 \). Hence, the ratio density \(f_r \) is continuous on \((-\infty, 0) \) and \((0, \infty) \), with a pole at zero. The results on the first row in Table 1 now follow. \(\square \)
Proposition 4. Let \(y_i = \alpha + \beta x_i + u_i \) \((i = 1, 2, \ldots, n)\), where \(u_i = (1 - b_i)v_i + b_i\sqrt{\gamma}v_i \), with \(\mu_y = E(y_i) \). Suppose that

(i) the \(x_i \) are independent \(N(\mu_x, \sigma_x^2) \),
(ii) the \(b_i \) are independent Bernoulli distributed, with success parameter \(p \),
(iii) the \(v_i \) are independent \(N(0, \sigma_v^2) \) and \(\gamma > 1 \),
(iv) \(x_i, b_i \) and \(v_i \) are independent for each \(i, j \) and \(l \),
(v) the sample size is odd, \(n = 2k + 1 \).

If \(k = 2r + 1 \) is odd, \(\hat{\beta}_{PS} \overset{d}{\to} \beta \) as \(n \to \infty \) and the exact distribution of (3) is given by

\[
P(\hat{\beta}_{PS} - \beta \leq z) = \frac{\Gamma(k + 1)}{\Gamma^2(r + 1)} \int_0^{F_z(z)} t^r (1 - t)^{r} dt,
\]

with

\[
F_z(z) = (1 - p)^2 F_r(z) + 2p(1 - p) F_r(\sqrt{2/(\gamma + 1)}z) + p^2 F_r(z/\sqrt{\gamma})
\]

and

\[
F_r(z) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{\sigma_x}{\sigma_v} z \right).
\]

For each \(r \), the density of \(\hat{\beta}_{PS} - \beta \) is symmetric about zero. The limiting distribution of \(\hat{\beta}_{PS} \) is normal,

\[
\sqrt{n}(\hat{\beta}_{PS} - \beta) \overset{d}{\to} N(0, [4f_2'(0)]^{-1}), \quad f_2(0) = \left[(1 - p)^2 + 2p(1 - p) \sqrt{\frac{2}{\gamma + 1}} + \frac{p^2}{\pi \sigma_v} \right] \frac{\sigma_x}{\sigma_v}.
\]

Proof. Since \(\mu_y = \alpha + \beta \mu_x \), we have

\[
y_{2i} - y_{2i-1} = \frac{\beta(x_{2i} - x_{2i-1}) + u_{2i} - u_{2i-1}}{x_{2i} - x_{2i-1}} = \beta + z_i,
\]

where

\[
z_i = \frac{u_{2i} - u_{2i-1}}{x_{2i} - x_{2i-1}} = \frac{(1 - b_{2i})v_{2i} + b_{2i}\sqrt{\gamma}v_{2i} - (1 - b_{2i-1})v_{2i-1} - b_{2i-1}\sqrt{\gamma}v_{2i-1}}{x_{2i} - x_{2i-1}}.
\]

It follows that \(P(\hat{\beta}_{PS} - \beta \leq z) = P(z_{(r+1)} \leq z) \), where \(k = 2r + 1 \) and \(z_{(r+1)} \) is the sample median of the i.i.d. sequence \(\{z_1, z_2, \ldots, z_k\} \). The cdf of \(z_i \) is given by

\[
F_z(z) = P(z_i \leq z) = \sum_{l,m} P(b_{2i} = l, b_{2i-1} = m) P(z_i \leq z|b_{2i} = l, b_{2i-1} = m),
\]

where \(l, m = 0, 1 \) and

\[
P(z_i \leq z|b_{2i} = 0, b_{2i-1} = 0) = P\left(\frac{v_{2i} - v_{2i-1}}{x_{2i} - x_{2i-1}} \leq z \right) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{\sigma_x}{\sigma_v} z \right),
\]

\[
P(z_i \leq z|b_{2i} = 0, b_{2i-1} = 1) = P\left(\frac{v_{2i} - \sqrt{\gamma}v_{2i-1}}{x_{2i} - x_{2i-1}} \leq z \right) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{\sigma_x}{\sigma_v} \sqrt{\frac{2}{\gamma + 1}} z \right),
\]

\[
P(z_i \leq z|b_{2i} = 1, b_{2i-1} = 0) = P\left(\frac{\sqrt{\gamma}v_{2i} - v_{2i-1}}{x_{2i} - x_{2i-1}} \leq z \right) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{\sigma_x}{\sigma_v} \sqrt{\frac{2}{\gamma + 1}} z \right),
\]

\[
P(z_i \leq z|b_{2i} = 1, b_{2i-1} = 1) = P\left(\frac{\sqrt{\gamma}v_{2i} - \sqrt{\gamma}v_{2i-1}}{x_{2i} - x_{2i-1}} \leq z \right) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{\sigma_x}{\sigma_v} \sqrt{\gamma} z \right).
\]

Hence,

\[
F_z(z) = (1 - p)^2 F_r(z) + 2p(1 - p) F_r(\sqrt{2/(\gamma + 1)}z) + p^2 F_r(z/\sqrt{\gamma}),
\]
where
\[F_r(z) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{\sigma_z}{\sigma_x} z \right). \]

Since \(F_z \) is strictly increasing, the unique solution to \(F_z(\xi) = 1/2 \) is \(\xi = 0 \). Standard results for order statistics gives us the exact distribution of \(z_{(r+1)} \) in terms of \(F_z(z) \). This proves the first part of (ii). For the second part, note that the continuous pdf \(f_z(z) \) of \(z_i \) is given by
\[F'_z(z) = (1-p)^2 f_r(z) + 2p(1-p)\sqrt{2/(\gamma + 1)} f_r(\sqrt{2/(\gamma + 1)}z) + (p^2/\sqrt{\gamma}) f_r(z/\sqrt{\gamma}), \]
where
\[f_r(z) = \frac{1}{\pi (\sigma_v/\sigma_x)^2 + z^2}. \]

It follows that \(f_z(z) = f_z(-z) \) for all real \(z \) and, hence, that the density of \(z_i \) is symmetric about zero. Since also the derivative of \(f_z(z) \) is continuous, standard results (Cramér, 1946, p. 369) gives us the limiting distribution in terms of \(F_z(0) \),
\[\sqrt{n}(\hat{\beta}_{PS} - \beta) = \sqrt{n}z_{(r+1)} \overset{d}{\rightarrow} N(0, [4f^2_z(0)]^{-1}), \]
where
\[f_z(0) = \left[(1-p)^2 + 2p(1-p)\sqrt{\frac{2}{\gamma + 1}} + \frac{p^2}{\sqrt{\gamma}} \right] \frac{\sigma_x}{\pi \sigma_v}. \]
This proves the second part of (ii). \(\square \)

Proposition 5. Let \(y_i = \alpha + \beta x_i + u_i \ (i = 1, 2, \ldots, n) \), where \(u_i = |x_i - \mu_x|v_i \). Suppose that
(i) the \(x_i \) are independent absolutely continuous random variables with finite mean \(\mu_x \),
(ii) the \(v_i \) are independent absolutely continuous random variables with cdf \(F_v(v) = 1 - F_v(-v) \),
(iii) the \(u_i \) have finite mean,
(iv) \(x_i \) and \(v_j \) are independent for each \(i \) and \(j \),
(v) the sample size is odd, \(n = 2k + 1 \).

Then the exact distribution of (5) is given by
\[F(\hat{\beta}_{UF} - \beta \leq z) = \frac{\Gamma(n+1)}{\Gamma^2(k+1)} \int_0^{F_z(z)} t^k (1-t)^k dt. \]
For each \(k \), the density of \(\hat{\beta}_{UF} - \beta \) is symmetric about zero. The consistency and asymptotic normality of \(\hat{\beta}_{UF} \) can be established under the usual assumptions for \(F_v(\cdot) \).

Proof. Since \(x_i \) has finite mean \(\mu_x \), \(\mu_y = \alpha + \beta \mu_x + E(u_i) \). Moreover, since the distribution of \(v_i \) is symmetric about zero, by Lemma 2, so is the distribution of \(u_i = |x_i - \mu_x|v_i \). Hence, as \(E(u_i) \) exists, \(E(u_i) = 0 \) and \(\mu_y = \alpha + \beta \mu_x \). Thus,
\[\frac{y_i - \mu_y}{\mu_x} = \frac{\beta(x_i - \mu_x) + u_i}{x_i - \mu_x} = \beta + \frac{u_i}{x_i - \mu_x} = \beta + z_i, \]
where,
\[z_i = \frac{u_i}{x_i - \mu_x} = \frac{|x_i - \mu_x|}{x_i - \mu_x} v_i = r_i v_i, \]
and
\[r_i = \frac{|x_i - \mu_x|}{x_i - \mu_x}. \]
Thus \(r_i \) is two-point distributed,
\[r_i = \begin{cases} -1, & x_i - \mu_x < 0 \\ 1, & x_i - \mu_x \geq 0. \end{cases} \]
If \(r_i = -1 \), then \(z_i = -v_i \) and the corresponding conditional density is
\[
f_{z|r=-1}(z) = f_{-v}(z) = f_v(z),
\]
where the last equality follows since the distribution of \(v_i \) is symmetric about zero. Similarly, \(f_{z|r=1}(z) = f_v(z) \). Hence,
\[
f_z(z) = f_{z,r}(z,-1) + f_{z,r}(z,1) = P(r = -1)f_{z|r=-1}(z) + P(r = 1)f_{z|r=1}(z)
\]
\[
= [P(r = -1) + P(r = 1)]f_v(z) = f_v(z).
\]

It follows that \(P(\hat{\beta}_{UF} - \beta \leq z) = P(z_{(k+1)} \leq z) \), where \(n = 2k + 1 \) and \(z_{(k+1)} \) is the sample median of the i.i.d. sequence \(\{z_1, z_2, \ldots, z_n\} \). Standard results for order statistics gives us the exact distribution of \(z_{(k+1)} \) in terms of \(F_z(z) = F_v(z) \). \(\square\)

Proposition 6. Let \(y_i = \alpha + \beta x_i + u_i \) (\(i = 1, 2, \ldots, n \)), where \(u_i = (x_i - \mu_x)^2 v_i \). Suppose that
(i) the \(x_i \) are independent \(N(\mu_x, \sigma_x^2) \),
(ii) the \(v_i \) are independent \(N(0, \sigma_v^2) \),
(iii) \(x_i \) and \(v_j \) are independent for each \(i \) and \(j \),
(iv) the sample size is odd, \(n = 2k + 1 \).

Then \(\hat{\beta}_{UF} \) is \(\beta \) as \(n \to \infty \) and the exact distribution of \((5) \) is given by
\[
P(\hat{\beta}_{UF} - \beta \leq z) = \frac{\Gamma(n + 1)}{\Gamma^2(k + 1)} \int_0^{F_z(z)} t^k (1 - t)^k dt
\]
with \(F_z(z) = (\pi \sigma_x \sigma_v)^{-1} \int_{-\infty}^{z} K_0 \left(|t| (\sigma_x \sigma_v)^{-1} \right) dt \), where \(K_0(\cdot) \) is the modified Bessel function of the second kind of order zero. For each \(k \), the density of \(\hat{\beta}_{UF} - \beta \) is symmetric about zero.

Proof. Since the \(x_i \) and \(v_i \) are independent \(N(\mu_x, \sigma_x^2) \) and \(N(0, \sigma_v^2) \), respectively, \(\mu_y = \alpha + \beta \mu_x \) and
\[
\frac{y_i - \mu_y}{x_i - \mu_x} = \frac{\beta(x_i - \mu_x) + u_i}{x_i - \mu_x} = \beta + \frac{u_i}{x_i - \mu_x} = \beta + z_i,
\]
where
\[
z_i = \frac{u_i}{x_i - \mu_x} = (x_i - \mu_x)v_i.
\]
Thus, \(z_i \) is the product of two independent, zero-mean normal random variables with variances \(\sigma_x^2 \) and \(\sigma_v^2 \), respectively. By Theorem 5 in Springer and Thompson (1970), the density \(f_z(\cdot) \) of \(z_i \) can be expressed in terms of a Meijer G-function. More specifically,
\[
f_z(z) = \frac{1}{2\pi \sigma_x \sigma_v} G_{0,2}^{2,0} \left(\frac{z^2}{4\sigma_x^2 \sigma_v^2}; 0, 0 \right),
\]
where \(G_{0,2}^{2,0}(\cdot) \) is a Meijer G-function which exists for \(z \neq 0 \) (Mathai, 1993, p. 63). Since \(f_z(z) = f_z(-z) \), the density is symmetric about zero. Moreover, by Equation (4) on p. 216 in Erdélyi (1953),
\[
G_{0,2}^{2,0} \left(\frac{z^2}{4\sigma_x^2 \sigma_v^2}; 0, 0 \right) = 2K_0 \left(2 \sqrt{\frac{z^2}{4\sigma_x^2 \sigma_v^2}} \right) = 2K_0 \left(\frac{|z|}{\sigma_x \sigma_v} \right),
\]
where \(K_0(\cdot) \) is the modified Bessel function of the second kind of order zero. Hence
\[
f_z(z) = \frac{1}{\pi \sigma_x \sigma_v} K_0 \left(\frac{|z|}{\sigma_x \sigma_v} \right).
\]

\(^1\)Note that there are typos in the statement of Theorem 5 in Springer and Thompson (1970). See the corresponding proof for details.
Proposition 7. Let $y_i = \alpha + \sum_{j=1}^q \beta_j x_{ji} + u_i$ ($i = 1, 2, \ldots, n$), with median μ_y. Suppose that

(i) the x_{ji} are independent $\mathcal{S}(a, 0, c_{x_j}, \mu_{x_j})$,
(ii) the u_i are independent $\mathcal{S}(a, 0, c_u, 0)$,
(iii) x_{ji} and u_i are independent for each i, j and l,
(iv) the sample size is odd, $n = 2k + 1$.

For ease of exposition, consider the extended unfeasible estimator and, for ease of notation, denote it by

$$\hat{\beta}_j = \text{med}\left\{ \frac{y_1 - \mu_y}{x_{j1} - \mu_{x_j}}, \frac{y_2 - \mu_y}{x_{j2} - \mu_{x_j}}, \ldots, \frac{y_n - \mu_y}{x_{jn} - \mu_{x_j}} \right\}.$$

Then $\hat{\beta}_j \overset{p}{\to} \beta_j$ as $n \to \infty$ ($j = 1, \ldots, q$) and the exact distribution of $\hat{\beta}_j$ is given by

$$P(\hat{\beta}_j - \beta_j \leq z) = \frac{\Gamma(n + 1)}{\Gamma^2(k + 1)} \int_0^{F_{z_j}(z)} t^k (1 - t)^k dt,$$

with

$$F_{z_j}(z) = \int_{-\infty}^{(c_{x_j}/c_j)z} \int_{-\infty}^{\infty} |t| f(st)f(t)dt ds,$$

where $f(\cdot)$ is the density of a $\mathcal{S}(a, 0, 1, 0)$ distributed random variable and $c_j^a = c_u + \sum_{m\neq j} |\beta_m|^a c_{m}^a$. For each k, the density of $\hat{\beta}_j - \beta_j$ is symmetric about zero. If $a = 2$ the limiting distribution of $\hat{\beta}_j$ is normal,

$$\sqrt{n}(\hat{\beta}_j - \beta_j) \overset{d}{\to} \mathcal{N}(0, [\pi(c_j/c_{x_j})/2]^2).$$

Proof. In view of Lemma 1, $\mu_y = \alpha + \sum_{j=1}^q \beta_j \mu_{x_j}$, hence,

$$\frac{y_i - \mu_y}{x_{ji} - \mu_{x_j}} = \frac{\beta_1(x_{1i} - \mu_{x_1}) + \cdots + \beta_j(x_{ji} - \mu_{x_j}) + \cdots + \beta_q(x_{qi} - \mu_{x_q}) + u_i}{x_{ji} - \mu_{x_j}} = \beta_j + z_{ji}.$$

Let r_{ji} denote the ratio of two independent $\mathcal{S}(a, 0, 1, 0)$ random variables. By assumption,

$$z_{ji} = \frac{\sum_{m\neq j} \beta_m(x_{mi} - \mu_{x_m}) + u_i}{x_{ji} - \mu_{x_j}} \overset{d}{=} \frac{v_{ji}}{w_{ji}} = \left(\frac{c_i}{c_{x_j}} \right) r_{ji},$$

where v_{ji} and w_{ji} are independent $\mathcal{S}(a, 0, c_j, 0)$ and $\mathcal{S}(a, 0, c_{x_j}, 0)$ variates, respectively, and $c_j^a = c_u^a + \sum_{m\neq j} |\beta_m|^a c_{m}^a$. By Lemma 2, the pdf of r_{ji} is symmetric about zero and the cdf of r_{ji} is given by

$$F_r(r) = \int_{-\infty}^{r} \int_{-\infty}^{\infty} |t| f(st)f(t)dt ds,$$

where $f(\cdot)$ is the pdf of a $\mathcal{S}(a, 0, 1, 0)$ variate. Hence, the density of z_{ji} is symmetric about zero and the distribution of z_{ji} is given by

$$F_{z_j}(z) = F_r(c_{x_j}z/c_j) = \int_{-\infty}^{(c_{x_j}/c_j)z} \int_{-\infty}^{\infty} |t| f(st)f(t)dt ds.$$
It follows that $P(\hat{\beta}_j - \beta_j \leq z) = P(z_{j(k+1)} \leq z)$, where $z_{j(k+1)}$ is the sample median of the i.i.d. sequence $\{z_{j1}, z_{j2}, \ldots, z_{jn}\}$. Standard results for order statistics gives us the exact distribution of $z_{j(k+1)}$ in terms of $F_{z_j}(z)$. The consistency of $\hat{\beta}_j$ follows from Lemma 3. This proves the first part of the proposition. For the second part, note that if $a = 2$ the numerator and denominator of z_{ji} are independent Gaussian random variables. Hence, z_{ji} is Cauchy distributed with zero median, scale parameter c_j/c_{x_j} (cf. Nolan, 2013, p. 23), and cdf

$$F_{z_j}(z) = \frac{1}{2} + \frac{1}{\pi} \arctan \left(\frac{c_{x_j}}{c_j} z \right).$$

The continuous pdf $f_{z_j}(z)$ of z_{ji} is given by

$$f'_{z_j}(z) = \frac{(c_j/c_{x_j})}{\pi[(c_j/c_{x_j})^2 + z^2]},$$

with

$$f_{z_j}(0) = \frac{c_{x_j}}{\pi c_j}.$$

Since also the derivative of $f_{z_j}(z)$ is continuous, standard results (Cramér, 1946, p. 369) gives us the limiting distribution in terms of $f_{z_j}(0)$,

$$\sqrt{n}(\hat{\beta}_j - \beta_j) = \sqrt{n}z_{j(k+1)} \xrightarrow{d} \mathcal{N}(0, [4f_{z_j}^2(0)]^{-1}).$$

This proves the second part of the proposition.

References

\[
\begin{array}{ccccccccccccc}
 \text{Parameter} & \text{Bias} & \text{MSE} \\
 \beta_0 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
 \beta_1 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
 \beta_2 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
 \beta_3 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
 \beta_4 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
 \beta_5 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
 \beta_6 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
 \beta_7 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
 \beta_8 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
 \beta_9 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
 \end{array}
\]